

May 31, 2017

U.S. Environmental Protection Agency, Region 9 Water Enforcement Section II 75 Hawthorne Street (ENF 3-2) San Francisco, CA 94105-3901

Attention: Juliet Hannafin

Subject: DRAFT Sediment Investigation Report

Sims Group USA Corporation, Redwood City, California

Dear Ms. Hannafin:

Terraphase Engineering Inc. is pleased to submit, on behalf of Sims Metal Management (Sims) the enclosed DRAFT *Sediment Investigation Report*, which describes the characterization of the marine sediment underneath and proximate to Sims' ship-loading conveyor located at Wharf 3 at the Port of Redwood City. This investigation has been completed in accordance with the Consent Decree between the United States Environmental Protection Agency and Sims Group USA Corporation, Case 3:14-cv-04209, effective December 1, 2014.

We look forward to discussing the findings with you. If you have any questions, please contact Peter Zawislanski at peter.zawislanski@terraphase.com or 510-645-1858, or Melisa Cohen at Melisa.Cohen@simsmm.com or 510-412-5307.

For Terraphase Engineering Inc.

Cauldon 1

Peter Zawislanski, PG, CHG

Principal Hydrogeologist

Jeff Wallace, PG Principal Geologist cc: Rich Campbell, EPA

Melisa Cohen, Sims Metal Management Steven Shinn, Sims Metal Management Scott Miller, Esq., Sims Metal Management

Margaret Rosegay, Esq., Pillsbury Winthrop Shaw Pittman

Enclosure: DRAFT Sediment Investigation Report, May 31, 2017

# DRAFT SEDIMENT INVESTIGATION REPORT SIMS METAL MANAGEMENT REDWOOD CITY, CALIFORNIA

Prepared for

Sims Group USA Corporation 699 Seaport Boulevard Redwood City, California 94063

Prepared by

Terraphase Engineering Inc. 1404 Franklin Street, Suite 600 Oakland, California 94612

May 31, 2017

Project Number 0012.001.008





# CONTENTS

| ACRONYMS AND ABBREVIATIONSV |                                                              |     |  |  |  |
|-----------------------------|--------------------------------------------------------------|-----|--|--|--|
| CERTIF                      | ICATION                                                      | vıı |  |  |  |
| SUBMI                       | ITTAL CERTIFICATION                                          | ıx  |  |  |  |
| 1.0                         | INTRODUCTION                                                 | 1   |  |  |  |
| 1.1                         | Purpose                                                      | 1   |  |  |  |
| 1.2                         | Facility Description                                         | 2   |  |  |  |
| 1.3                         | Project Area                                                 | 2   |  |  |  |
| 1.4                         | Objectives of the Sediment Investigation                     | 3   |  |  |  |
| 1.5                         | Overview of Sediment Investigation Field Activities          | 3   |  |  |  |
| 1.6                         | Organization of this Document                                | 3   |  |  |  |
| 2.0                         | PREPARATORY ACTIVITIES                                       | 5   |  |  |  |
| 2.1                         | Notifications                                                | 5   |  |  |  |
| 2.2                         | Health and Safety Plan                                       | 5   |  |  |  |
| 2.3                         | Special Training/Certification                               | 5   |  |  |  |
| 3.0                         | SEDIMENT SAMPLE COLLECTION                                   | 6   |  |  |  |
| 3.1                         | Project Area Sediment Samples                                | 6   |  |  |  |
| 3.2                         | Background Sediment Samples                                  | 6   |  |  |  |
| 3.3                         | Sample Collection and On-Board Sample Processing and Methods | 7   |  |  |  |
| 3.                          | 3.1 Petite Ponar Sample Collection                           | 7   |  |  |  |
| 3.                          | 3.2 Core Sample Collection                                   | 7   |  |  |  |
| 3.                          | 3.3 Manual Grab Sediment Sample Collection                   |     |  |  |  |
| 3.                          | 3.4 Sample Processing                                        |     |  |  |  |
| 3.4                         | Global Positioning System                                    | 9   |  |  |  |
| 3.5                         | Field Equipment Decontamination Procedure                    |     |  |  |  |
| 3.6                         | Investigation-Derived Waste                                  |     |  |  |  |
| 3.7                         | Chain-of-Custody Protocol                                    |     |  |  |  |
| 3.8                         | Sample Shipping                                              | 11  |  |  |  |
| 4.0                         | ANALYTICAL METHODS                                           | 12  |  |  |  |
| 5.0                         | FIELD OBSERVATIONS                                           | 13  |  |  |  |
| 5.1                         | Sediment Classification                                      | 13  |  |  |  |
| 5.2                         | Visible Observations of Scrap Metal                          | 13  |  |  |  |
| 6.0                         | ANALYTICAL RESULTS                                           | 15  |  |  |  |
| 6.1                         | Background Sediment Sample Results                           | 15  |  |  |  |

| 6.2   | . Pr  | oject Area Sediment Sample Results                                    | 15 |
|-------|-------|-----------------------------------------------------------------------|----|
| 7.0   | DAT   | A EVALUATION                                                          | 17 |
| 7.1   | . Pr  | oject Area Concentrations vs. Background 95%UTLs                      | 17 |
| 7     | .1.1  | Metals in Subtidal Sediment                                           | 17 |
| 7     | .1.2  | Total PCBs in Subtidal Sediment                                       | 18 |
| 7     | '.1.3 | Metals in Riprap Sediment                                             | 18 |
| 7     | .1.4  | Total PCBs in Riprap Sediment                                         | 18 |
| 7.2   | . Sp  | patial Distribution of Metals in the Project Area                     | 18 |
| 7.3   | S Sp  | patial Distribution of PCBs in the Project Area                       | 19 |
| 7.4   | - Co  | omparison of PCB Data to Reference-Area PCB Data                      | 19 |
| 8.0   | QUA   | ALITY CONTROL                                                         | 21 |
| 8.1   | . D:  | ata Verification                                                      | 21 |
| 8.2   | . Fi  | eld Quality Control Samples                                           | 21 |
| 8.3   | La    | boratory Quality Control Samples                                      | 21 |
| 9.0   | LAB   | ORATORY DATA VALIDATION                                               | 22 |
| 9.1   | . ο   | uality Control Evaluation of the Analytical Data                      | 22 |
|       | 0.1.1 | Field Quality Control Sample Checks                                   |    |
|       | .1.2  | Laboratory Quality Control Sample Checks                              |    |
| 9     | .1.3  | Representativeness                                                    |    |
| 9     | .1.4  | Completeness                                                          |    |
| 9     | .1.5  | Comparability                                                         | 24 |
| 9     | .1.6  | Sensitivity                                                           | 24 |
| 10.0  | DISC  | CUSSION                                                               | 25 |
| 10.   | 1 D   | iscussion of Field Observations                                       | 25 |
| 10.   |       | iscussion of Analytical Results                                       |    |
| 11.0  |       | ,                                                                     | 27 |
| 12.0  | REF   | ERENCES                                                               | 29 |
| TABLE | S     |                                                                       |    |
|       |       |                                                                       |    |
|       | 1     | Sampling Location Coordinates                                         |    |
|       | 2     | Sediment Sample Analytical Results - Background Subtidal Locations    |    |
|       | 3     | Statistical Evaluation - Background Subtidal Sediment Data            |    |
|       | 4     | Sediment Sample Analytical Results - Background Riprap Locations      |    |
|       | 5     | Statistical Evaluation - Background Riprap Sediment Data              |    |
|       | 6a    | Sediment Sample Analytical Results – Project Area, Riprap Locations   |    |
|       | 6b    | Sediment Sample Analytical Results – Project Area, Subtidal Locations |    |

- 7a Statistical Evaluation Project Area, Riprap Locations
- 7b Statistical Evaluation Project Area, Subtidal Locations
- 8 Reference Area PCB Data

#### **FIGURES**

- 1 Site Location Map
- 2 Project Area
- 3 Overview of Sediment Sampling Locations
- 4 Subtidal and Riprap Sediment Sample Locations Wharf 3
- 5a Background Sediment Sample Locations Wharf 2
- 5b Background Sediment Sample Locations Wharf 4
- 5c Background Sediment Sample Locations Wharf 5
- 6 Scrap Metal Observations in Project Area Sediment Samples
- 7a Copper, Lead and Zinc Concentrations in Background Sediment Wharf 2
- 7b Copper, Lead and Zinc Concentrations in Background Sediment Wharf 4
- 7c Copper, Lead and Zinc Concentrations in Background Sediment Wharf 5
- 8a Total PCB Concentrations in Background Sediment Wharf 2
- 8b Total PCB Concentrations in Background Sediment Wharf 4
- 8c Total PCB Concentrations in Background Sediment Wharf 5
- 9 Copper Concentrations in Project-Area Surface Sediment
- 10 Lead Concentrations in Project-Area Surface Sediment
- 11 Zinc Concentrations in Project-Area Surface Sediment
- 12 Iron Concentrations in Project-Area Surface Sediment
- 13 Total PCB Concentrations in Project-Area Sediment Cores
- 14 Copper Concentrations in Project-Area Sediment Cores
- 15 Lead Concentrations in Project-Area Sediment Cores
- 16 Zinc Concentrations in Project-Area Sediment Cores
- 17 Iron Concentrations in Project-Area Sediment Cores
- 18 Total PCB Concentrations in Project-Area Sediment Cores

#### **APPENDICES**

- A Sediment Sample Logs
- B Sediment Photo Logs
- C Analytical Laboratory Reports
- D Data Validation Reports

THIS PAGE LEFT INTENTIONALLY BLANK

## ACRONYMS AND ABBREVIATIONS

μg/kg micrograms per kilogram

AWA area-weighted average

COC chain-of-custody

the Conveyor Sims' ship-loading conveyor

EPA Environmental Protection Agency

ERM Effects Range Median

the Facility Sims' metal recycling facility at the Port of Redwood City, San Mateo

County, California

ft bss feel below sediment surface

GPS Global Positioning System

grab sampler Petite Ponar grab sampler

HASP Health and Safety Plan

HAZWOPER Hazardous Waste Operations and Emergency Response

IDW investigation-derived waste

LCS laboratory control sample

Leviathan Environmental Services

mg/kg milligrams per kilogram

NOAA National Oceanic and Atmospheric Administration

NTE not-to-exceed

PCB polychlorinated biphenyl

the Port Port of Redwood City

QA quality assurance

QC quality control

RPD relative percent difference

RGs remediation goals

RTC response to comments

SFEI San Francisco Estuary Institute

Sims Group USA Corporation

SSAP Sediment Sampling and Analysis Plan

SSAP/QAPP Sediment Sampling and Analysis Plan and Quality Assurance Project Plan

Terraphase Engineering Inc.

TWIC Transportation Worker Identification Credentials

UCL upper confidence limit

UTL upper tolerance limit

USACE United States Army Corps of Engineers

USCS Unified Soil Classification System

# **CERTIFICATION**

Information, conclusions, and recommendations in this document have been prepared by a California Professional Geologist.

**DRAFT** 

Peter T. Zawislanski Principal Hydrogeologist Professional Geologist (CA 7210) Certified Hydrogeologist (CA 925) Date

DRAFT

Jeff Wallace Principal Geologist Registered Geologist (OR G1288) Date



THIS PAGE LEFT INTENTIONALLY BLANK

## **SUBMITTAL CERTIFICATION**

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

| Signature: | DRAFT | <br> |  |
|------------|-------|------|--|
|            |       |      |  |
| Name:      |       |      |  |
|            |       |      |  |
| Title:     |       | <br> |  |
| _          |       |      |  |
| Date:      |       |      |  |

THIS PAGE LEFT INTENTIONALLY BLANK

## 1.0 INTRODUCTION

## 1.1 Purpose

In accordance with Paragraph 12 of the Consent Decree between the United States Environmental Protection Agency (EPA) and Sims Group USA Corporation (Sims), Case 3:14-cv-04209, effective December 1, 2014 ("the Consent Decree"), Sims submitted, on March 1, 2015, for EPA's review and approval, a *Draft Sediment Sampling and Analysis Plan* (SSAP) to characterize the marine sediment within a portion of Redwood Creek to determine if the shared-use area underneath and proximate to Sims' ship-loading conveyor ("the Conveyor") located at Wharf 3 at the Port of Redwood City ("the Port"; Figures 1 and 2) has been affected by total metals and polychlorinated biphenyls (PCBs) associated with Sims' scrap metal ship-loading activities.

A Revised Draft Sediment Sampling and Analysis Plan and Quality Assurance Project Plan (SSAP/QAPP) was submitted to the EPA on January 22, 2016, in response to EPA comments provided in a letter dated October 8, 2015. The March 31, 2016, Final SSAP/QAPP addressed EPA comments presented in comment letters dated October 8, 2015, and March 17, 2016, and during in-person meetings between EPA, Sims, and Terraphase Engineering Inc. (Terraphase) representatives on December 14, 2015, and March 8, 2016. EPA approved the Final SSAP/QAPP on April 25, 2016.

Implementation of the Revised SSAP was undertaken in two phases of investigation. The first phase of investigation was conducted between June 6 and 15, 2016 ("the June 2016 investigation"). Following receipt and review of analytical results from this sampling event, Terraphase and Sims determined that additional sampling was warranted to fully characterize the Project Area at Wharf 3 near the Conveyor, (Figure 2) and to achieve the objectives of the Consent Decree. Interim results from the first phase of investigation were reported to the EPA in the *Interim Sediment Investigation Results and Proposed Additional Sediment Sampling* letter report, prepared by Terraphase and dated August 31, 2016 ("Interim Results Report"). On December 9, 2016, Terraphase prepared a response-to-comments (RTC) letter to address EPA comments on the Interim Results Report. The RTC letter identified the locations and depths for proposed additional sediment sampling, both in the background areas and in the Project Area. EPA approved the additional sampling on December 30, 2016.

The second phase of investigation, which implemented the December 9, 2016 proposal, was conducted between March 6 and 17, 2017 ("the March 2017 investigation"). This sampling event provided additional data to characterize lateral and vertical extents of potentially affected sediments, and to provide background data for the intertidal (riprap) area.

The comprehensive results of the field investigation activities and laboratory analyses pursuant to the Final SSAP/QAPP are presented herein.

## 1.2 Facility Description

Sims operates a metal recycling facility ("the Facility") located at the Port, in San Mateo County, California, immediately to the west of Seaport Boulevard as shown on Figure 1. At the Facility, Sims receives, sorts, separates, shreds, and stores bulk scrap metal (ferrous and nonferrous) for sale and export. These activities occur on a 13-acre parcel of land located east of a public right-of-way at the Port known as Herkner Road. The areas to the north and south of the Facility are occupied by a variety of other industrial tenants of the Port, some of which are engaged in industrial and bulk materials storage, handling, and shipping.

Sims and other unrelated bulk cargo operations conduct industrial ship-loading or unloading activities at Port-owned wharves located on the western side of Herkner Road, along the bank and shipping channel of Redwood Creek. Port facilities along the water include several ship-loading wharves, docks, and piers along the eastern shoreline of Redwood Creek. Bauxite, gypsum, and miscellaneous construction materials generally are unloaded from ships docked at the Port. Sims operates a Conveyor to deliver its scrap metal commodity (shredded specification-grade scrap steel) into the hulls of ships berthed at the Port-owned Wharf 3 located on the western side of Herkner Road. While Sims loads ships with scrap metal, bauxite and gypsum operators unload their commodities at Wharf 3.

The initial portion of the Conveyor is located on the Facility, but the remainder of the Conveyor spans Herkner Road and a concrete pier and apron located on pilings above the edge of Redwood Creek. The concrete apron is located directly beneath the Conveyor and extends from the shoreline to the edge of Wharf 3. The primary purpose of the apron is to catch material that may fall from the Conveyor during ship-loading operations. The concrete apron was installed in 1991 and was improved in 2002 to include additional screening material along the sides. As noted, other Port tenants use Wharf 3 (but not the Conveyor) for unloading bulk materials, including bauxite and gypsum.

## 1.3 Project Area

The Project Area in Redwood Creek is centered around the Sims Conveyor at Wharf 3, as shown on Figure 2. The Project Area was selected in conformance with the sampling protocol presented in the Consent Decree, which required investigation of "the area 50 feet to either side of the Conveyor, between the mean high tide line and Wharf 3." This area was defined in the Final SSAP/QAPP as the "primary area." This primary area is contained within the larger Project Area; the latter extends approximately 150 feet to the north and south of the Conveyor as shown on Figure 2. Based on the results from the June 2016 investigation, distribution of metals and PCBs in subtidal sediments justified a slight expansion of the areal extent of sediment sampling and additional subsurface sampling in the Project Area.

## 1.4 Objectives of the Sediment Investigation

The principal objective of the Final SSAP/QAPP was to characterize marine sediment in the vicinity of the Conveyor in accordance with the Consent Decree. The individual project objectives included:

- Visually assessing near-surface sediment in the vicinity of the Conveyor for evidence of scrap metal to establish the area of observed scrap metal impacts;
- Determining background concentrations of metals and PCBs in surficial sediments of Redwood Creek between Port wharves and the shoreline by sampling near-shore areas in the creek channel that are outside the Project Area; and
- Assessing the lateral extent of metals and PCBs in surficial sediments in the Project Area.

An additional objective, which was not identified in the Consent Decree but was added following discussions with EPA, was to assess the vertical extent of metals and PCBs in sediments in the Project Area.

## 1.5 Overview of Sediment Investigation Field Activities

Sediment samples were collected from the Project Area representing surface and subsurface sediments. Thirty-six sediment samples were collected from subtidal areas outside of, and at least 350 feet away from, the Project Area, to establish background concentrations of metals and PCBs. Furthermore, 18 surface samples were collected from background riprap areas to establish background concentrations of metals and PCBs specific to riprap areas. Fifty-eight locations were sampled in the Project Area, with 18 of those locations cored for multi-depth sample collection in addition to surficial grab samples.

Surface sediment samples were collected using a Ponar grab sampler, sediment cores were collected using a piston-corer or vibracore sampler, and sediment samples from the shoreline riprap area were manually collected using a stainless-steel spoon. Non-disposable equipment was decontaminated between samples. Sediment samples were visually examined for the presence of metal scrap. Sediment samples were individually homogenized and screened to remove coarse-fraction material prior to being submitted to the analytical laboratory.

## 1.6 Organization of this Document

The remainder of the Sediment Investigation Report is organized into the following sections.

Section 1.0 provides background information about the Facility, including location, operations, and an overview of the sediment investigation.

Section 2.0 provides a summary of the preparatory activities.

Section 3.0 discusses sediment sample collection activities and methods.

Section 4.0 provides the analytical methods.

Section 5.0 presents the field observations

Section 6.0 presents the analytical results.

Section 7.0 provides data evaluation.

Section 8.0 provides the field and laboratory quality control.

Section 9.0 provides laboratory data validation.

Section 10.0 presents a discussion of results.

Section 11.0 provides conclusions.

Section 12.0 provides a list of references used to develop this report.

## 2.0 PREPARATORY ACTIVITIES

The following sections discuss the preparatory activities that were conducted at the Facility prior to commencement of field investigation activities.

#### 2.1 Notifications

Terraphase provided notifications to the San Francisco Regional Water Quality Control Board, Bay Conservation and Development Commission, and Redwood City prior to performing field investigation activities. Sims provided notification and project details to the Port.

## 2.2 Health and Safety Plan

Terraphase prepared a site-specific health and safety plan (HASP) prior to performing field investigative activities. All fieldwork was monitored according to the HASP to ensure that appropriate health and safety procedures were followed. A copy of the HASP was kept onsite during scheduled field investigation activities.

## 2.3 Special Training/Certification

Terraphase performed investigative activities in accordance with the Hazardous Waste Operations and Emergency Response (HAZWOPER) training requirements and other requirements in 29 CFR 1910.120(e). Transportation Worker Identification Credentials (TWIC) required for Port access were obtained prior to field investigation activities.

## 3.0 SEDIMENT SAMPLE COLLECTION

Sediment samples were collected in accordance with the approved Final SSAP/QAPP, the additional provisions of the Interim Results Report, and the RTC letter, between June 6 and June 15, 2016, and between March 6 and March 17, 2017. Leviathan Environmental Services (Leviathan) provided and operated the sampling vessel – a low-profile 28-foot aluminum, tunnel-hull boat – and the sample collection equipment. Locations W3-51 through W3-54 were accessed with a smaller vessel because the larger craft was unable to access these locations because of low clearance. Sediment samples were collected from the following areas (Figure 3):

- Wharf 2 Background Subtidal and Riprap Sediment Samples
- Wharf 3 Project Area Subtidal and Riprap Sediment Samples
- Wharf 4 Background Subtidal and Riprap Sediment Samples
- Wharf 5 Background Subtidal and Riprap Sediment Samples

Four sediment sample collection methods were used during the field investigation, including: (1) surface grab sampling using a Petite Ponar grab sampler, (2) surface and subsurface sampling using a manually operated piston-core sampler, (3) subsurface sampling using a vibracore sampler, and (4) direct manual collection of sediment from the riprap-covered shoreline using a spoon or trowel. These methods are further described below.

## 3.1 Project Area Sediment Samples

Sediment samples collected at the Wharf 3 Project Area included 18 sediment cores advanced to a target minimum depth of approximately 5 feet below sediment surface (ft bss), and 17 surface sample locations, as shown on Figure 4. Between one and six samples were retained from each sampling location, for a total number of 104 subtidal samples which were submitted to the analytical lab. An additional 23 riprap surficial samples were collected from the Wharf 3 Project Area and submitted for analysis. A total of 16 samples were collected from the deepest 1 foot of recovered sediment cores during the March 2017 sampling. These deep (i.e., below 5 ft bss) samples were placed on hold at the laboratory.

## 3.2 Background Sediment Samples

Background samples were collected from areas outside of the Project Area to represent Redwood Creek background conditions. Background sediment samples were collected at Wharves 2, 4, and 5, at locations shown on Figures 5a, 5b, and 5c, respectively. Surface and subsurface sediment samples were collected from 48 locations in the three background areas. Background locations along Wharves 4 and 5 are approximately 350 feet and 1,000 feet upgradient of the Project Area; the background location along Wharf 2 is approximately 400 feet downgradient of the Project Area. At each background area, one sediment core location to 3 ft bss (two subsurface samples per core), nine surface sediment locations, and six surficial riprap

locations were sampled. In total, 54 background sediment samples were collected for laboratory analysis.

## 3.3 Sample Collection and On-Board Sample Processing and Methods

Sediment samples were examined, photographed, sieved, and processed on the sampling vessel, as described below. The physical characteristics of each sediment sample or core collected were examined and noted on the individual sediment sample logs, which are presented in Appendix A. Photo logs illustrating the sampling procedures and examples of encountered sediments are presented in Appendix B.

Sediment samples were placed in laboratory-supplied containers. Sample containers were labeled, logged on chain-of-custody (COC) forms, and placed in an ice-chilled cooler for transport to a California-certified laboratory for analysis following COC protocols. Sample containers were labeled to include the project name, sample identification (location and depth interval), date and time of sample collection, requested analyses, and sampler's initials.

## 3.3.1 Petite Ponar Sample Collection

A Petite Ponar grab sampler ("grab sampler") was deployed from the sampling vessel and, in certain locations, directly from Wharf 3, to collect surface sediment at Project Area and background locations, as shown on Figure 4 and Figures 5a through 5c. The grab sampler was decontaminated prior to use at each sampling location. The grab sampler was positioned outboard of the vessel and lowered through the water column at a rate no faster than 1 foot per second. Upon contact with the top of the sediment, the grab sampler's spring-action pin was unweighted and released. The lowering line was slowly pulled taut, closing the grab sampler and trapping sediment. The grab sampler was slowly pulled out of the water and any overlying water within the grab sampler was drained through the top screens prior to opening.

The grab sampler was opened and the sediment was transferred to a decontaminated stainless-steel bowl. If the sediment volume was deemed insufficient, the grab sampler was rinsed in bay water and the sampling process repeated at the same location. Any remaining overlying water was siphoned off with a decontaminated plastic bulb baster, with care taken not to siphon off sediment. The sediment sample was then processed in the same manner as other sample collection methods, as described in Section 3.3.4, below.

## 3.3.2 Core Sample Collection

Sediment cores were collected using with either a piston-core sampler or a vibracore sampler. The piston-core sampler was advanced by manually pushing a disposable 4-inch-diameter core barrel into the sediment. As needed, a slide hammer was used to advance the core to the target sample depth of 36 inches. The piston core was used during the June 2016 sampling event, and

at one location in March 2017 (location 52). The vibracore was used during the March 2017 sampling event to achieve greater sampling depths compared to the piston core sampler.

The vibracore sampler has a powered vibratory assembly at the head of a 10-foot-long aluminum core barrel and a removable drive head with a core catcher. A disposable polyethylene core collection sleeve was placed into the core barrel before the sampler was advanced. The weight and action of the vibracore head assembly advanced the core barrel into the sediment up to 10 ft bss. The sediment column penetrated in the Project Area generally consists of soft sediment. Normal compaction of the sediment core occurs as the core barrel is extracted by the vibratory action. As a result, the observed sediment core lengths were typically 8 to 9 feet.

Once retrieved, the sediment cores were inspected to assess whether sufficient sediment was retained in the core barrel pursuant to the approved Final SSAP/QAPP. If the core recovery was satisfactory, the core liner was cut open and sample processing was conducted in the same manner as other sample collection methods, as described in Section 3.3.4, below. If refusal was encountered prior to reaching the target depth for that core location, up to three attempts were made to advance the core to the desired depth. For each attempt, if needed, the vessel was repositioned within a few feet of the original location before the core barrel was advanced.

Following core retrieval, the sediment core was cut into sections representing the target depths for sample processing. Sample depth intervals were adjusted based on sediment core recovery. In general, targeted sample depths for sediment cores are shown in the table below. Actual sample depths are shown on Tables 2, 4, and 6a/6b.

| Target Sample Intervals (ft bss)                   | Location                 |
|----------------------------------------------------|--------------------------|
| 0.0-0.5 (surface)                                  | Project Area, background |
| 1.5-2.0                                            | Project Area, background |
| 2.5-3.0                                            | Project Area, background |
| 3.5-4.0                                            | Project Area             |
| 4.5-5.0                                            | Project Area             |
| Bottom 0.5- to-1.0-foot section of core (archived) | Project Area             |

#### 3.3.3 Manual Grab Sediment Sample Collection

Manual grab sediment samples were collected by field personnel on foot along the riprap near the shoreline at Project Area and background locations, to a maximum depth of approximately

Page 8 Terraphase Engineering Inc.

6 inches below the sediment surface. The surface sediment samples were manually collected during low tide when the sediment was exposed. Intertidal riprap sample locations are below the Mean High Water Line, as confirmed by a survey conducted by a licensed surveyor, and shown on Figures 4 and 5a through 5c. Sediment samples were collected with a decontaminated stainless-steel spoon and bowl at riprap locations (Figure 4). Following collection, sample processing was conducted in the same manner as other sample collection methods, as described in Section 3.3.4, below.

## 3.3.4 Sample Processing

Provided that the sample recovery was sufficient, the sediment was inspected, measured, and photographed. Each grab or core sample was placed into a decontaminated stainless-steel bowl and transferred to the sampling vessel and then homogenized. The homogenized sample was placed into a decontaminated stainless-steel, 1/8-inch sieve tray, and screened into a decontaminated stainless-steel bowl. The sample was then placed into a laboratory-supplied container. Each individual sample was assigned a unique alphanumeric identifier, as described in the Final SSAP/QAPP. Samples were stored on ice in insulated coolers while aboard the vessel and during transportation to the laboratory. Material larger than 1/8 inch was screened from the sample and was rinsed, described, containerized, and generally retained for archive.

During the June 2016 sampling event, material retained on the sieve from some of the grab samples was disposed of as investigation-derived waste (IDW). The disposal of this material as IDW was a deviation from the April 25, 2016, EPA approval letter. This deviation was due to a miscommunication with the field staff, and was uniformly corrected during the March 2017 field program, when all material that did not pass the sieve was retained.

## 3.4 Global Positioning System

Final sample locations were documented using a Trimble® GeoXH 6000 handheld Global Positioning System (GPS) device with sub-meter accuracy. GPS coordinates for all samples are presented in Table 1. Proposed sample location coordinates were uploaded into the GPS unit prior to field investigation activities. Terraphase field personnel used the GPS unit to navigate to each proposed sample location. Field location coordinates were recorded in the GPS unit after sample collection and processing. Some of the field sample locations had to be adjusted relative to the proposed locations due to either refusal or access issues, or slight movement of the vessel during maneuvering and positioning with multiple anchors and lines.

## 3.5 Field Equipment Decontamination Procedure

Stainless-steel equipment was used during sediment sampling, including spoons, scrapers, bowls, sieve trays, and the cutter head assembly of the vibracore. All equipment used for sampling was properly decontaminated between sample locations to prevent cross-

contamination between samples. Liquinox®, deionized water, and a 10-percent nitric-acid solution were used to decontaminate the sampling equipment. The decontamination process included the following steps:

- 1. Wash the equipment with Liquinox® and water solution.
- 2. Rinse with deionized water.
- 3. Wipe the equipment with a clean paper towel.
- 4. Rinse with a 10-percent nitric acid solution.
- 5. Rinse with deionized water.
- 6. Wipe the equipment with clean paper towel.

Any sampling equipment that could not be properly cleaned was not used for subsequent sampling activities.

## 3.6 Investigation-Derived Waste

IDW, including excess sediment and decontamination fluids, was temporarily stored at the Facility in 55-gallon drums and handled in accordance with state and federal requirements, pending waste characterization. The 55-gallon drums were properly labeled and included description of waste, date generated, contact information, and project name.

Composite samples of the IDW were collected into laboratory-supplied, properly labeled containers, placed in an ice-chilled chest, and submitted to an analytical laboratory for chemical analyses. The analytical results were evaluated to determine the waste classification for disposal purposes. IDW from the June 2016 event was disposed of by Sims; IDW from the March 2017 event is pending profiling and transportation to appropriate waste disposal facilities, in a manner consistent with U.S. Department of Transportation regulations.

Disposable personal protective equipment, used polyethylene core barrels, paper towels, and similar sampling materials, were managed as nonhazardous solid waste. These wastes were placed into plastic bags and transferred to an onsite industrial waste container, the contents of which are routinely disposed of in a municipal landfill.

## 3.7 Chain-of-Custody Protocol

Sediment sample processing was tracked using COC forms. The COC forms are included in the laboratory reports provided in Appendix C. For each sample that was submitted for laboratory analysis, an entry was made on a COC form. COCs were prepared for groups of samples collected during each field day. Original COCs accompanied each shipment of samples to the laboratory.

## 3.8 Sample Shipping

Samples were placed in an ice-chilled cooler for transport to the laboratory for analysis. The laboratory was notified in advance of sample shipments. Upon receipt of the samples, the Laboratory Quality Assurance (QA) Officer immediately notified the Project QA/Quality Control (QC) Officer if conditions or problems were identified that require immediate resolution. Such conditions included container breakage, missing or improper COC, exceeded holding times, missing or illegible sample labeling, or temperature excursions.

## 4.0 ANALYTICAL METHODS

Sediment samples collected during this field investigation were submitted to Eurofins Laboratory, an analytical laboratory certified by the California Department of Health Services through the Environmental Laboratory Accreditation Program. Based on the initial results of the June 2016 investigation, and in accordance with the SSAP/QAPP, Sims elected to analyze all contingency sediment samples that had been placed on hold at the laboratory. Contingency samples collected from the bottom 0.5- to-1.0-foot section of core during the March 2017 event were not analyzed.

Sediment samples and aqueous equipment blanks were analyzed as follows:

#### Sediment

- California Title-22 Metals by U.S. EPA Method 6010B
- Mercury by U.S. EPA Method 7470A/7471A
- Iron and Aluminum by U.S. EPA Method 6010B
- PCB Aroclors by EPA Method 8082A
- Moisture Content by ASTM D-2216

#### Aqueous

- California Title-22 Metals by U.S. EPA Method 6010B
- Mercury by U.S. EPA Method 7470A/7471A
- Iron and Aluminum by U.S. EPA Method 6010B
- PCB Aroclors by EPA Method 8082A

Composite samples of the sediment IDW and a grab sample of the aqueous IDW (decontamination water) were collected and submitted to Eurofins Laboratory. Samples were analyzed for the same media-specific constituents listed above. The IDW analytical results were evaluated to determine the waste classification for disposal purposes.

## 5.0 FIELD OBSERVATIONS

#### 5.1 Sediment Classification

Sediment sample logs are presented in Appendix A. Sediments were described using general guidelines of the Unified Soil Classification System (USCS), as appropriate. The sediment in both the Project Area and the background areas consisted predominantly of silt and clay, with minor amounts of sand and gravel. Trace amounts of shell fragments were commonly observed in the surficial and shallow-depth core samples. The sediment was generally homogenous in nature, with relatively uniform coloration, grain size distribution, and consistency. The majority of sediments encountered were dark gray to black, silt to clayey silt, soft to medium stiff, wet to saturated, and moderately plastic. No significant stratification (i.e., sand lenses or other natural lithologic boundaries) was noted during coring activities. Sediments were characterized by an organic odor typical of reduced marine sediments.

Some of the sediment samples collected in the Project Area contained trace amounts of metal fragments, fabric, rubber, glass and plastic debris, and oxidized bauxite balls. These materials were photo-documented and described in sediment logs when encountered. Further discussion of observed non-native materials is presented below.

## 5.2 Visible Observations of Scrap Metal

The presence of scrap metal in the sediment samples was visually evaluated in the field during sample processing (i.e., sieving). Small amounts of scrap metal were observed in sediment from 18 sample locations of the total 58 locations sampled in the Project Area. The locations where scrap metal was observed are shown on Figure 6. Scrap metal included copper wire, other metallic wire, miscellaneous metal hardware (screws, nails, washers) and metal pieces up to 1 to 2 inches in maximum dimension. Photo logs of various materials sieved from the sediment samples are presented in Appendix B.

Most of the locations where scrap metal was observed were limited to an area within 50 feet of the concrete apron. Scrap metal was observed in one sample location greater than 50 feet south of the concrete apron (surface sample location 55). Scrap metal was observed in four samples greater than 50 feet north of the concrete apron (surface sample locations 46 and 51; core sample locations 49 and 50), as shown on Figure 6.

At seven coring locations (5, 6, 7, 41, 43, 44, and 47), at approximately 1.5 to 2 ft bss, a semi-consolidated interval was encountered during vibracore advancement which slowed the penetration rate. The driller was able to advance the vibracore to the targeted sample depth at all of these locations except for location W3-43, where refusal was encountered three times at a maximum depth of 3 feet. Based on visual examination of the sediment cores, the interval corresponding to this relatively dense interval consisted of gravel-sized particles with trace

amounts of non-native materials such as synthetic fiber, metal fragments, and copper wire. These materials formed a dense, weakly agglomerated, friable mass that could be disarticulated under finger pressure. The material was degraded and corroded. These characteristics, along with its depth, suggests that this material likely represents historical deposition. No evidence of a widespread agglomerated metal mass was observed or evidenced by the drilling action of the vibracore, or the observations of recovered sediment cores. Photo logs included as Appendix B further document this material from various core locations.

## 6.0 ANALYTICAL RESULTS

Sediment samples were analyzed for the constituents listed in Section 4. The laboratory analytical reports for Project Area and background samples are presented in Appendix C. Analytical results are summarized below.

## 6.1 Background Sediment Sample Results

Analytical results for the background sediment samples are presented in Tables 2 and 4. Concentrations of copper, lead, and zinc in surface background sediment samples (both subtidal and riprap) are shown on Figures 7a, 7b, and 7c, for Wharves 2, 4, and 5, respectively. Concentrations of total PCB Aroclors for these samples are shown on Figures 8a, 8b, and 8c, for Wharves 2, 4, and 5, respectively.

Background sediment sample results were evaluated statistically to calculate the minimum, maximum, mean, standard deviation, the 95 percent upper confidence limit on the mean (95%UCL), and the 95 percent upper tolerance limit on the mean (95%UTL) for each metal and for total PCB Aroclors. The 95%UCL and 95%UTL were calculated using ProUCL, U.S. EPA's statistical package. Separate statistical evaluations were performed for subtidal background and riprap background samples because the metal and PCB data from the riprap samples were confirmed to be a statistically different population than the subtidal sample data based on the Gehan-Breslow and Tarone-Ware nonparametric tests. The results of the statistical evaluation of the background sediment data are presented in Tables 3 and 5.

Not all statistical parameters could be calculated for all metals because of, in some cases, a large number of non-detects. For example, there were too few detections of antimony (subtidal and riprap), selenium (subtidal), and thallium (subtidal and riprap) to calculate a 95%UCL or 95%UTL for these metals (Tables 3 and 5).

The 95%UCL and 95%UTL values, which are highlighted in Tables 2 and 4, for the three combined background areas, were used to compare to Project Area data, as discussed in Section 7, and presented on Tables 6a and 6b. Subtidal and riprap samples from the Project Area were screened against the respective 95%UCLs and 95%UTLs for background subtidal and riprap sample types.

Gravimetric moisture content analysis was performed and reported on a dry-weight basis. Moisture content in the background sediment samples ranged from 45% to 69% in subtidal samples and from 34% to 69% in the riprap samples.

## 6.2 Project Area Sediment Sample Results

Analytical results for the Project Area sediment samples are presented in Tables 6a and 6b.

Project Area sediment sample results were evaluated statistically to calculate the minimum, maximum, mean, and standard deviation, the 95%UCL, and the 95% UTL for each metal and for total PCB Aroclors in riprap and subtidal sample locations. The results of the statistical evaluations of the Project Area sediment data are presented in Tables 7a and 7b. Gravimetric moisture content analysis was performed and reported on a dry-weight basis. Moisture content in the Project Area samples ranged from 46% to 70% in subtidal samples, and from 29% to 67% in riprap samples (Tables 6a and 6b).

## 7.0 DATA EVALUATION

Concentration of metals and total PCBs in Project Area sediments were compared with their respective background concentrations, as follows:

- Riprap data from the Project Area were compared to 95%UTLs of background riprap data.
- Subtidal data from the Project Area (surficial and subsurface) were compared to 95%UTLs of background subtidal data.

## 7.1 Project Area Concentrations vs. Background 95%UTLs

The concentrations of each metal and total PCBs in each Primary Area sediment sample were compared with the 95%UTL maximum concentration for the respective analyte in the background data set (Tables 6a and 6b). The copper, lead, zinc, iron, and total PCBs results in subtidal surface sediment are presented on Figures 9, 10, 11, 12, and 13, respectively; locations that exceeded the 95%UTL are indicated on the figures. Depth-discrete concentrations of copper, lead, zinc, iron, and total PCBs in samples from sediment cores are presented on Figures 14, 15, 16, 17, and 18, respectively. These four metals and total PCBs were selected for discussion because they had the most frequent exceedances relative to the background 95%UTLs.

#### 7.1.1 Metals in Subtidal Sediment

Copper concentrations exceeded their 95%UTL background concentration in 15 out of 35 subtidal surficial sediment samples (Figure 9) and 43 out of all 104 subtidal sediment samples (Figure 14).

Lead concentrations exceeded their 95%UTL background concentration in 20 out of 35 subtidal surficial sediment samples (Figure 10) and in 70 out of all 104 subtidal sediment samples (Figure 15).

Zinc concentrations exceeded their 95%UTL background concentration in 27 of the 35 subtidal surficial sediment samples (Figure 11) and in 68 out of all 104 subtidal sediment samples (Figure 16).

Iron concentrations exceeded their 95%UTL background concentration in 9 of the 35 subtidal surficial sediment samples (Figure 12) and in 37 out of all 104 subtidal sediment samples (Figure 17).

#### 7.1.2 Total PCBs in Subtidal Sediment

Total PCB concentrations exceeded their 95%UTL background concentration in 8 out of the 35 subtidal surficial sediment samples (Figure 13) and in 37 out of all 104 subtidal sediment samples (Figure 18).

#### 7.1.3 Metals in Riprap Sediment

Copper concentrations exceeded their 95%UTL background concentration in 20 out of 23 riprap sediment samples (Figure 9).

Lead concentrations exceeded their 95%UTL background concentration in 16 out of 23 riprap sediment samples (Figure 10).

Zinc concentrations exceeded their 95%UTL background concentration in 19 out of 23 riprap sediment samples (Figure 11).

Iron concentrations exceeded their 95%UTL background concentration in 16 out of 23 riprap sediment samples (Figure 12).

## 7.1.4 Total PCBs in Riprap Sediment

Total PCB concentrations exceeded their 95%UTL background concentration in 16 out of 23 riprap sediment samples (Figure 13).

#### 7.2 Spatial Distribution of Metals in the Project Area

Concentrations of metals were highest in subtidal sediment in close proximity to the concrete apron, and along the intertidal riprap shoreline on either side of the concrete apron. Concentrations of metals in subtidal sediment generally decreased with distance from the concrete apron, both to the south and north. Vertical distribution of metals in core samples (collected up to 5.0 ft bss) generally exhibited the highest concentrations in the upper 2 to 3 feet of sediment, with decreasing concentration trends to total depth. Core locations in close proximity to the apron generally had higher detections at depth than distal core locations. Project Area riprap samples exhibited overall higher concentrations of metals than Project Area subtidal samples, which is consistent with the trend observed in the background areas.

Concentrations of iron in both riprap and subtidal sediments decrease with distance from the concrete apron and conveyor. Iron concentrations in surficial subtidal sediment decrease to below the background 95%UTL within approximately 50 feet of the concrete apron. Iron concentrations in riprap sediment decrease to below the background 95%UTL within approximately 100 feet of the concrete apron.

## 7.3 Spatial Distribution of PCBs in the Project Area

Similar to metals, concentrations of PCBs were highest in subtidal sediment in close proximity to the concrete apron and along the intertidal riprap shoreline on either side of the concrete apron. Concentrations of PCBs in subtidal sediment generally decreased with distance from the concrete apron, both to the south and north. Lateral distribution of PCBs in exceedance of background 95%UTL is overall less widespread compared to lateral distribution of metals exceedances. Project Area riprap samples exhibited overall higher concentrations of PCBs than Project Area subtidal samples, which is consistent with the trend observed in background areas.

Of the 18 cores advanced in the Project Area, all but one were advanced to at least the target depth of 5 ft bss. Of the 17 samples analyzed from 5 ft bss – the maximum depth from which analytical data were obtained – six samples contained total PCBs below the method detection limit for PCBs, five were below the background subtidal 95%UCL, and two were between the 95%UCL and the 95%UTL. Four samples from this depth had PCBs detected above the 95%UTL; however, all were below 500 micrograms per kilogram ( $\mu$ g/kg), and data from other samples in these cores clearly indicate a decreasing concentration trend with depth.

The vertical distribution of total PCBs in core samples indicates that the highest concentrations occur in the 1.5-to-2-foot depth, with decreasing concentration trends to total depth, and lower concentrations at the surface. Total PCB concentrations were higher in subsurface sediment from locations in close proximity to the apron than in distal core locations (i.e., at locations more than 50 feet from the Conveyor).

## 7.4 Comparison of PCB Data to Reference-Area PCB Data

The Project Area subtidal PCB data were also compared with subtidal PCB data from three documented sources:

- 2014 PCB data collected as part of the Redwood City Navigation Improvement Feasibility and Integrated Environmental Impact Statement/Environment Impact Report ("the 2014 Redwood Creek data"; USACE 2015), at locations not shown in USACE 2015;
- Unpublished 2015 PCB data collected for the Redwood City Navigation Improvement
   Project, provided by EPA staff during a meeting with Sims and Terraphase representatives
   on March 8, 2016 ("the 2015 Redwood Creek data"); and
- San Francisco Estuary Institute (SFEI) ambient PCB concentrations for San Francisco Bay Area sediments calculated from data collected between 2002 and 2003, and between 2007 and 2014 (SFEI 2016).

A statistical summary of these reference-area PCB data is presented in Table 8.

Total PCB concentrations from the 2014 and 2015 Redwood Creek data were calculated as the sum of concentrations of 40 selected PCB congeners, for samples collected from 12 locations shown on Figure 3. The total PCB concentrations in Redwood Creek sediment collected in 2014 and 2015 ranged from 1.22 to 356  $\mu$ g/kg, with 95%UCLs ranging from 17.39 to 197  $\mu$ g/kg. By comparison, the background-area total PCB 95%UCL concentrations for subtidal sediments from the Wharf 2, 4, and 5 areas were 157.1  $\mu$ g/kg, with a maximum total PCB concentration of 452  $\mu$ g/kg. Therefore, the range of total PCB concentrations found in the site-specific background areas was similar to the range found in sediment from reference locations in Redwood Creek.

The median total PCB concentration in Project Area subtidal surficial and subsurface sediment samples was within the range of total PCB concentrations in the Redwood Creek reference samples. This indicates that over half of the samples had concentrations within the range of concentrations found in Redwood Creek Reference samples. However, the maximum and mean concentrations of total PCBs in the Project Area were above the maximum concentration from the Redwood Creek dataset.

All total PCB concentrations in the Project Area subtidal surface sediment samples were above the SFEI ambient total PCB concentrations, except for 11 samples which were below detection limits for all PCBs. Most total PCB concentrations in subtidal sediment samples from the background areas were also above the SFEI ambient total PCB concentrations based on the 90% upper tolerance limits of the 90<sup>th</sup> and 99<sup>th</sup> percentile concentrations.

## 8.0 QUALITY CONTROL

The laboratory analyses were performed according to analytical methods, detection limits, and QA/QC procedures described in the SSAP/QAPP.

#### 8.1 Data Verification

Data collected were subjected to the data verification process, which includes proofreading and editing hard copy data reports to ensure that data correctly represent the analytical measurement. In general, verification identifies non-technical errors in the data package that can be corrected (e.g., typographical errors). Data verification also includes verifying that the sample identifiers on laboratory reports (hard copy) match those on the COC record.

## 8.2 Field Quality Control Samples

Field QC samples were collected and analyzed, including sixteen equipment blanks and two field blanks.

## 8.3 Laboratory Quality Control Samples

Laboratory QC samples are used to verify that procedures, such as sample handling, storage, and preparation, are not introducing variables into the process that could render the validity of samples questionable, and assess data quality in terms of precision and accuracy.

Laboratory QC samples were accomplished by analyzing initial and continuing calibration samples, method blanks, laboratory control samples (LCSs), surrogate spikes, matrix spikes, and laboratory duplicate samples. Results are included in the QC package for each laboratory analytical report presented in Appendix C.

## 9.0 LABORATORY DATA VALIDATION

Analytical data were reviewed and data validation reports are presented in Appendix D. Analytical data were reviewed in general accordance with the principles for data validation presented in the U.S. EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (U.S. EPA 2014a) and the U.S. EPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (U.S. EPA 2014b). The data were reviewed to evaluate potential impact on data quality in the areas of data completeness, analytical holding times and sample preservation, field and laboratory blank samples, LCSs, matrix spike/matrix spike duplicate samples, surrogate compound recovery, and compound quantitation.

## 9.1 Quality Control Evaluation of the Analytical Data

This section presents the results of the evaluation of both field and laboratory QC checks. The evaluation of the validated data sets compared the targeted data results versus the actual data results through the use of precision, accuracy, representativeness, completeness, and comparability parameters.

### 9.1.1 Field Quality Control Sample Checks

All field QC sample results (equipment blanks and field blanks) were reviewed. Some contaminants were detected in the equipment blank and field blank samples. Refer to the data validation reports in Appendix D for detailed descriptions of target compounds.

#### 9.1.2 Laboratory Quality Control Sample Checks

The procedures in this section are designed to assess QC data for blanks, duplicates, spikes, and surrogates. The review of these data provides information concerning the precision and accuracy of measurements conducted by the laboratories and field procedures.

#### 9.1.2.1 Laboratory Method Blanks

The laboratory method blank samples had some detections of target compounds. Refer to the data validation reports in Appendix D for detailed descriptions of target compounds.

#### 9.1.2.2 Laboratory Control Samples

All percent recovery values for LCSs were within acceptable criteria established by the laboratory for the respective testing methods except aluminum (batch 160610L03), antimony (batch 170324LA4), and Aroclor-1016 (batch 170310L02), which were outside control limits, but laboratory recovery percentage is within the marginal exceedance control limit range (+/- 4 standard deviation from the mean).

## 9.1.2.3 Surrogate Compound Recovery

Some surrogate compounds were above and outside control limits because of required sample dilution and matrix interference. The associated method blank surrogate spike compound was in control, and therefore, the sample data were reported without further clarification. Results for all other surrogate compounds that were prepared and analyzed by the laboratory were within control limits.

## 9.1.2.4 Matrix Spike/Matrix Spike Duplicates

In several of the QC batches, matrix spike and/or matrix spike duplicates compounds were out of control limits because of suspected matrix interference. In some post-digestive spikes, the spike recovery and relative percent difference (RPD) control limits do not apply, resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. All other percent recoveries and RPDs for matrix spikes, matrix spike duplicates, and post-digestive spikes were within acceptable criteria established by the laboratory for the respective testing methods.

## 9.1.2.5 Sample Duplicates

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

## 9.1.3 Representativeness

Representativeness is the reliability with which a measurement or measurement system reflects the true conditions under investigation (U.S. EPA 2014a, b). Representativeness is influenced by the number and location of the sampling points, sampling timing and frequency of monitoring efforts, and the field and laboratory sampling procedures.

The representativeness of data was enhanced by the use of established field and laboratory procedures and their consistent application. Samples that were collected are considered to be representative of the location of sample collection.

## 9.1.4 Completeness

The completeness of the data is described as a ratio of the amount of data expected from the field program versus the amount of valid data received. Valid data are considered to be those data that have not been rejected (were not R-qualified) either from data validation or internal data review. Completeness can be expressed as the percentage of valid results relative to the total number of requested results.

Based on the data validation reports, none of the results was rejected in the sampling event. The completeness of the sample sets submitted for analysis is 100%, which is above the completeness goal of 90% set for this project.

## 9.1.5 Comparability

Comparability evaluates whether the reported data are comparable with similar data reported by other organizations. The comparability of the laboratory results was found to be acceptable. All units were consistent and appropriate for the matrix sampled.

## 9.1.6 Sensitivity

Sensitivity is essentially the lowest detection limit of the method or instruments for each of the measurement parameters of interest. Technically, it is the capability of a method or instrument to discriminate between measurement responses representing different levels of the variable of interest.

The analytical laboratory determined the minimum concentration (i.e., method detection limit, instrument detection limit, analytical reporting limit) per laboratory certification requirements set forth by the California Department of Health Services. The lowest technically feasible reporting limits were used for the analytical methods.

## 10.0 DISCUSSION

Results of analytical testing and field observations from sediment sampling activities conducted between June 2016 and March 2017 are presented in the sections above. This section provides an overview discussion of the investigation results, and presents our current understanding of site conditions based on both phases of work. Field observations of metal and other non-native materials that are potentially related to Sims' activities (presented in Section 5), as well as the analytical results of sediment testing (presented in Section 6), are both critical to achieving the site characterization objective. These are both summarized and discussed below.

## 10.1 Discussion of Field Observations

Trace amounts of visible metal were observed in 18 out of 58 Project Area sample locations. Most of the locations where scrap metal was observed were in close proximity to the concrete apron (i.e., the Conveyor) or to Wharf 3. The metal fragments observed in samples collected near the concrete apron are likely related to scrap-metal-loading operations. However, the metal observed in locations more than 40 feet away from the concrete apron may be due to other industrial activities which take place on Wharf 3. Identified metal fragments were generally quite small, less than 2 inches in maximum dimension, and were sparsely distributed through the upper section of the sediment cores. Some increase in density was noted based on vibracore penetration rate in the area near the concrete apron; however, no material which can be interpreted to consist of an indurated metal mass was observed.

## 10.2 Discussion of Analytical Results

Sediment sampling was conducted at Wharves 2, 4, and 5, to provide a project-specific background data set against which to statistically evaluate Project Area data. All Project Area data were screened against background 95%UTLs to characterize extent and distribution of elevated metals and PCBs concentrations in subtidal and riprap sediments.

The metals and PCB concentrations in riprap sediment samples collected in the Project Area were typically higher than in the subtidal sediment. This trend was also observed in all three of the background areas. In the Project Area riprap samples, the concentrations of metals and PCBs were highest adjacent to the concrete apron; a significant decrease is generally observed at a distance of 50 ft to 75 ft in each direction, north and south of the apron. Nonetheless, total PCBs detected in the two riprap samples furthest from the apron in both the north and south directions (approximately 100 ft) were higher than the 95%UTL PCB background concentration of 1,211  $\mu$ g/kg, with a total PCB concentration in the southern-most sample (W3-18) of 2,360  $\mu$ g/kg, and a total PCB concentration in the northern-most sample (W3-31) of 1,390  $\mu$ g/kg. The

collection of one additional riprap sediment sample beyond these two locations would improve the understanding of the lateral distribution of PCBs in the Project Area riprap sediment.

Concentrations of metals and PCBs in Project-Area sediments were found to generally decrease with distance from the concrete apron and with increasing depth. The observed concentration trends indicate that the lateral distribution of metals and PCBs in subtidal sediments is adequately characterized in the Project Area.

Concentrations of both metals and PCBs in Project Area core samples were almost uniformly highest in the 1.5 to 3.0 ft bss depth interval. Despite the 95%UTL exceedances for some metals and total PCBs in samples from the 5 ft bss (i.e., deepest analyzed) depth from several core locations, particularly in close proximity to the Conveyor, adequate vertical characterization has been achieved to meet the objectives of this investigation.

## 11.0 CONCLUSIONS

This report presents results of an investigation of marine sediments conducted by Terraphase at the Sims facility between June 2016 and March 2017. The investigation was conducted in accordance with the Consent Decree, the approved SSAP/QAPP, and was designed to determine whether marine sediments in the Project Area have been affected by total metals and PCBs potentially associated with Sims' scrap metal ship-loading activities. During the two phases of investigation, sediment samples were collected throughout the Project Area, and in three background areas (Wharves 2, 4, and 5). Surficial and subsurface subtidal samples collected from up to 5 feet bss, along with surficial samples from the intertidal zone along the ripraparmored shoreline, were analyzed for metals and PCBs.

A total of 181 discrete sediment samples were submitted for chemical analysis for 19 individual metals, and PCB Aroclors. The resulting data set was statistically evaluated to develop Site-specific background concentrations for the analytes, and to compare such background concentrations with the Project-Area analytical results. The quantity and distribution of sample locations in the Project Area was sufficient to characterize the extent of metals and PCBs, as required by the Consent Order. The analytical data, in conjunction with the field observations, demonstrate that elevated metals and PCBs are generally limited to shallow sediments in the "primary area", i.e., within approximately 50 feet laterally of the Conveyor.

Scrap metal and other non-native materials were found in de minimis quantities. A pervasive agglomerated metal mass was not observed in the subsurface sediment cores. Based on the relative ease in advancing the vibracore device, even in close proximity to the Conveyor, we conclude that indurated metal is not present in the subtidal area.

The results of this investigation provide sufficient information on the nature and extent of subtidal sediment quality in the Project Area to assess the environmental risk posed by metals and PCBs, and/or to evaluate the potential need for remediation. Although some of the peripheral subtidal sediment samples contained lead and zinc at concentrations above their respective background 95%UTLs, these exceedances were minor, at 10 to 20% above the 95%UTL. PCB concentrations in the peripheral subtidal samples were all below the background 95%UTL. Total PCB concentrations in four of the 4.5-to-5-ft-bgs samples slightly exceeded the background 95%UTL; total PCB concentrations ranged from 400 to 490  $\mu$ g/kg as compared with the 95%UTL of 395  $\mu$ g/kg. Furthermore, metals and total PCB concentrations along the periphery of the Project Area were within or below the likely range of potential clean-up goals (National Research Council 2007). Therefore, no additional sediment investigations in the subtidal area are recommended.

Similar to the subtidal sediment quality, a significant decrease in the concentration of metals and total PCBs is observed in the riprap sediment data with increasing distance away from the concrete apron and conveyor. However, the collection of one additional riprap sediment sample

beyond furthest locations to the north and south is recommended to improve the understanding of the lateral distribution of metals and PCBs in the Project Area riprap sediment.

## 12.0 REFERENCES

- National Research Council. 2007. Sediment Dredging at Superfund Megasites Assessing the Effectiveness. National Academies Press, Washington, DC.
- San Francisco Estuary Institute (SFEI). 2016. Technical Memorandum, Updated Ambient Concentrations of Toxic Chemicals in the San Francisco Bay Area Sediments.
- Terraphase Engineering Inc. (Terraphase). 2016. Final Sediment Sampling and Analysis Plan and Quality Assurance Project Plan, Sims Metal Management, Redwood City, California. March 31.
- United States of Army Corps of Engineers (USACE), San Francisco District. 2015. Redwood City Harbor Navigation Improvement Feasibility Report and Integrated EIS/EIR. HydroPlan LLC, in collaboration with GAIA and Moffatt and Nichol.
- U.S. Environmental Protection Agency (U.S. EPA). 2014a. U.S. EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. Office of Superfund Remediation and Technology Innovation. EPA 540-R-014-002.
- \_\_\_\_\_\_. 2014b. U.S. EPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review. Office of Superfund Remediation and Technology Innovation. EPA 540-R-013-001.
- \_\_\_\_\_. 2016. U.S. EPA Conditional Approval Letter for the Final SSAP in Accordance with Section V, Paragraph 13.b of the Consent Decree. April 25.

THIS PAGE LEFT INTENTIONALLY BLANK

## **TABLES**

**Table 1**Sampling Location Coordinates
Sediment Investigation Report
Sims Metal Management, Redwood City, California



| Area    | Sample   | Actual      | (June 2016) | Actual (    | March 2017) |
|---------|----------|-------------|-------------|-------------|-------------|
| Alea    | Location | Northing    | Easting     | Northing    | Easting     |
|         | W2-01    | 2013557.345 | 6065544.855 | n/a         | n/a         |
|         | W2-02    | 2013548.350 | 6065565.102 | n/a         | n/a         |
|         | W2-03    | 2013542.937 | 6065581.341 | n/a         | n/a         |
|         | W2-04    | 2013584.781 | 6065530.965 | n/a         | n/a         |
|         | W2-05    | 2013576.749 | 6065552.681 | n/a         | n/a         |
|         | W2-06    | 2013568.318 | 6065575.186 | n/a         | n/a         |
|         | W2-07    | 2013562.432 | 6065591.087 | n/a         | n/a         |
|         | W2-08    | 2013603.333 | 6065568.302 | n/a         | n/a         |
| Wharf 2 | W2-09    | 2013589.987 | 6065586.090 | n/a         | n/a         |
|         | W2-10    | 2013580.830 | 6065599.254 | n/a         | n/a         |
|         | W2-11    | n/a         | n/a         | 2013534.326 | 6065594.231 |
|         | W2-12    | n/a         | n/a         | 2013532.238 | 6065605.847 |
|         | W2-13    | n/a         | n/a         | 2013558.846 | 6065602.164 |
|         | W2-14    | n/a         | n/a         | 2013552.991 | 6065613.269 |
|         | W2-15    | n/a         | n/a         | 2013573.164 | 6065610.334 |
|         | W2-16    | n/a         | n/a         | 2013566.873 | 6065619.001 |
|         | W3-01    | 2013018.054 | 6065356.263 | n/a         | n/a         |
|         | W3-02    | 2013013.005 | 6065375.815 | 2013009.215 | 6065394.326 |
|         | W3-03    | 2013035.461 | 6065361.051 | n/a         | n/a         |
|         | W3-04    | 2013027.416 | 6065379.206 | 2012998.019 | 6065389.189 |
|         | W3-05    | 2013052.178 | 6065369.322 | 2013045.148 | 6065361.041 |
|         | W3-06    | 2013042.909 | 6065386.453 | 2013004.648 | 6065365.232 |
|         | W3-07    | 2013043.743 | 6065408.346 | 2013022.289 | 6065396.305 |
|         | W3-08    | 2013026.451 | 6065397.549 | 2013026.738 | 6065372.019 |
|         | W3-09    | 2013011.017 | 6065396.338 | 2013098.413 | 6065435.410 |
|         | W3-10    | 2012997.361 | 6065413.816 | n/a         | n/a         |
|         | W3-11    | 2013018.511 | 6065419.679 | n/a         | n/a         |
|         | W3-12    | 2013036.848 | 6065430.021 | n/a         | n/a         |
|         | W3-13    | 2013029.283 | 6065439.909 | n/a         | n/a         |
| Wharf 3 | W3-14    | 2013011.492 | 6065445.641 | n/a         | n/a         |
|         | W3-15    | 2012994.404 | 6065436.938 | n/a         | n/a         |
|         | W3-16    | 2012976.344 | 6065432.450 | n/a         | n/a         |
|         | W3-17    | 2012956.996 | 6065427.587 | n/a         | n/a         |
|         | W3-18    | 2012937.234 | 6065420.615 | n/a         | n/a         |
|         | W3-19    | 2012938.840 | 6065394.341 | n/a         | n/a         |
|         | W3-20    | 2012958.083 | 6065400.154 | n/a         | n/a         |
|         | W3-21    | 2012977.293 | 6065407.239 | n/a         | n/a         |
|         | W3-22    | 2013068.122 | 6065457.500 | n/a         | n/a         |
|         | W3-23    | 2013078.025 | 6065464.731 | n/a         | n/a         |
|         | W3-24    | 2013096.939 | 6065467.548 | n/a         | n/a         |
|         | W3-25    | 2013111.565 | 6065471.969 | n/a         | n/a         |
|         | W3-26    | 2013063.473 | 6065439.304 | n/a         | n/a         |
|         | W3-27    | 2013082.813 | 6065441.005 | n/a         | n/a         |

**Table 1**Sampling Location Coordinates
Sediment Investigation Report
Sims Metal Management, Redwood City, California



| Aras      | Sample   | Actual      | (June 2016) | Actual (     | March 2017) |
|-----------|----------|-------------|-------------|--------------|-------------|
| Area      | Location | Northing    | Easting     | Northing     | Easting     |
|           | W3-28    | 2013102.745 | 6065448.851 | n/a          | n/a         |
|           | W3-29    | 2013122.821 | 6065453.051 | n/a          | n/a         |
|           | W3-30    | 2013164.684 | 6065466.719 | n/a          | n/a         |
|           | W3-31    | 2013161.993 | 6065487.139 | n/a          | n/a         |
|           | W3-32    | 2012960.954 | 6065341.583 | n/a          | n/a         |
|           | W3-33    | 2012975.714 | 6065345.512 | n/a          | n/a         |
|           | W3-34    | 2012996.892 | 6065350.655 | n/a          | n/a         |
|           | W3-35    | 2012952.213 | 6065353.751 | n/a          | n/a         |
|           | W3-36    | 2012970.268 | 6065361.425 | n/a          | n/a         |
|           | W3-37    | 2012991.685 | 6065367.676 | n/a          | n/a         |
|           | W3-38    | 2012947.580 | 6065374.008 | 2012947.459  | 6065385.944 |
|           | W3-39    | 2012965.849 | 6065380.288 | 2012976.295  | 6065362.393 |
|           | W3-40    | 2012988.300 | 6065389.692 | 2012989.152  | 6065376.263 |
|           | W3-41    | 2013080.229 | 6065378.049 | 2013096.429  | 6065384.607 |
|           | W3-42    | 2013104.207 | 6065385.328 | n/a          | n/a         |
| Wharf 3   | W3-43    | 2013079.779 | 6065397.439 | 2013089.574  | 6065401.017 |
|           | W3-44    | 2013094.655 | 6065402.207 | 2013095.773  | 6065400.550 |
|           | W3-45    | 2013113.395 | 6065410.630 | n/a          | n/a         |
|           | W3-46    | 2013133.130 | 6065416.758 | n/a          | n/a         |
|           | W3-47    | 2013067.995 | 6065413.718 | 2013080.444  | 6065422.317 |
|           | W3-48    | 2013089.859 | 6065423.279 | 2013100.61   | 6065414.853 |
|           | W3-49    | 2013110.016 | 6065430.600 | 2013110.634  | 6065424.320 |
|           | W3-50    | 2013127.947 | 6065434.355 | 2013127.51   | 6065437.392 |
|           | W3-51    | 2013172.903 | 6065429.373 | n/a          | n/a         |
|           | W3-52    | 2013172.840 | 6065445.797 | -10727007.68 | 5832503.444 |
|           | W3-53    | n/a         | n/a         | 2013204.240  | 6065443.437 |
|           | W3-54    | n/a         | n/a         | 2013201.030  | 6065459.624 |
|           | W3-55    | n/a         | n/a         | 2012930.068  | 6065341.241 |
|           | W3-56    | n/a         | n/a         | 2012965.215  | 6065370.894 |
|           | W3-57    | n/a         | n/a         | 2012945.061  | 6065357.761 |
|           | W3-58    | n/a         | n/a         | 2012929.801  | 6065379.758 |
|           | W4-1     | 2012587.010 | 6065267.191 | n/a          | n/a         |
|           | <b></b>  | <del></del> |             | <del></del>  |             |
|           | W4-2     | 2012583.634 | 6065289.443 | n/a          | n/a         |
|           | W4-3     | 2012579.404 | 6065312.928 | n/a          | n/a         |
|           | W4-4     | 2012614.484 | 6065254.307 | n/a          | n/a         |
|           | W4-5     | 2012603.778 | 6065271.263 | n/a          | n/a         |
|           | W4-6     | 2012600.706 | 6065299.984 | n/a          | n/a         |
|           | W4-7     | 2012597.247 | 6065321.352 | n/a          | n/a         |
| Wharf 4   | W4-8     | 2012632.419 | 6065283.125 | n/a          | n/a         |
| vviiaii 4 | W4-9     | 2012631.576 | 6065300.755 | n/a          | n/a         |
|           | W4-10    | 2012627.920 | 6065319.371 | n/a          | n/a         |
|           | W4-11    | n/a         | n/a         | 2012577.256  | 6065334.027 |
|           | W4-12    | n/a         | n/a         | 2012571.264  | 6065349.899 |
|           | W4-13    | n/a         | n/a         | 2012598.168  | 6065336.301 |
|           | W4-14    | n/a         | n/a         | 2012593.986  | 6065352.904 |
|           | W4-15    | n/a         | n/a         | 2012623.150  | 6065340.775 |

## Table 1

Sampling Location Coordinates
Sediment Investigation Report
Sims Metal Management, Redwood City, California



| Araa | Sample   | Actual (J | une 2016) | Actual (M   | arch 2017)  |
|------|----------|-----------|-----------|-------------|-------------|
| Area | Location | Northing  | Easting   | Northing    | Easting     |
|      | W4-16    | n/a       | n/a       | 2012620.327 | 6065358.128 |

# **Table 1**Sampling Location Coordinates Sediment Investigation Report Sims Metal Management, Redwood City, California



| Area     | Sample   | Actual      | (June 2016) | Actual (    | March 2017) |
|----------|----------|-------------|-------------|-------------|-------------|
| Alea     | Location | Northing    | Easting     | Northing    | Easting     |
|          | W5-1     | 2011864.430 | 6065253.349 | n/a         | n/a         |
|          | W5-2     | 2011851.088 | 6065273.548 | n/a         | n/a         |
|          | W5-3     | 2011838.088 | 6065292.003 | n/a         | n/a         |
|          | W5-4     | 2011900.051 | 6065250.285 | n/a         | n/a         |
|          | W5-5     | 2011880.743 | 6065280.474 | n/a         | n/a         |
|          | W5-6     | 2011875.492 | 6065293.475 | n/a         | n/a         |
|          | W5-7     | 2011863.260 | 6065312.066 | n/a         | n/a         |
| Wharf 5  | W5-8     | 2011906.347 | 6065288.402 | n/a         | n/a         |
| Wildii 5 | W5-9     | 2011897.339 | 6065310.160 | n/a         | n/a         |
|          | W5-10    | 2011888.431 | 6065327.859 | n/a         | n/a         |
|          | W5-11    | n/a         | n/a         | 2011817.153 | 6065320.310 |
|          | W5-12    | n/a         | n/a         | 2011807.650 | 6065337.206 |
|          | W5-13    | n/a         | n/a         | 2011851.807 | 6065331.549 |
|          | W5-14    | n/a         | n/a         | 2011843.036 | 6065349.130 |
|          | W5-15    | n/a         | n/a         | 2011883.113 | 6065342.764 |
|          | W5-16    | n/a         | n/a         | 2011872.091 | 6065358.699 |

#### Notes:

Coordinates are in California State Plane, Zone III, survey feet, NAD 83 NAD = North American Datum

**Table 2**Sediment Sample Analytical Results - Background Subtidal Locations
Sediment Investigation Report
Sims Metal Management, Redwood City, California



| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Location   | W2-01            | W2-02            | W2-03            | W2-04              |                | W2-05            |                  | W2-06            | W2-07            | W2-08              |
|-----------------------------------------|------------|------------------|------------------|------------------|--------------------|----------------|------------------|------------------|------------------|------------------|--------------------|
| Sample (                                | Pepth (ft) | 0-0.5            | 0-0.5            | 0-0.5            | 0-0.5              | 0-0.5          | 1.5-2            | 2.5-3            | 0-0.5            | 0-0.5            | 0-0.5              |
| San                                     | ple Date   | 6/13/2016        | 6/13/2016        | 6/13/2016        | 6/13/2016          | 6/13/2016      | 6/13/2016        | 6/13/2016        | 6/13/2016        | 6/13/2016        | 6/14/2016          |
|                                         | Field ID   | W2-1-SED-6.8-7.3 | W2-2-SED-4.0-4.5 | W2-3-SED-2.5-3.0 | W2-4-SED-13.5-14.0 | W2-5-SED-0-0.5 | W2-5-SED-1.5-2.0 | W2-5-SED-2.5-3.0 | W2-6-SED-5.1-5.6 | W2-7-SED-2.7-3.2 | W2-8-SED-12.1-12.6 |
|                                         | SDG        | 16-06-1303       | 16-06-1303       | 16-06-1303       | 16-06-1303         | 16-06-1303     | 16-06-1303       | 16-06-1303       | 16-06-1303       | 16-06-1303       | 16-06-1302         |
| Inorganics                              |            |                  |                  |                  |                    |                |                  |                  |                  |                  |                    |
| Moisture                                | %          | 63               | 58               | 52               | 65                 | 56             | 51               | 49               | 62               | 57               | 65                 |
| Metals                                  |            |                  |                  |                  |                    |                |                  |                  |                  |                  |                    |
| Aluminum                                | mg/kg      | 26000            | 29400            | 21800            | 33500              | 30100          | 32800            | 32700            | 20800            | 20800            | 25800B             |
| Antimony                                | mg/kg      | <2.08            | <1.87            | <1.51            | <2.16              | <1.78          | <1.6             | <1.53            | 4.81B            | <1.75            | <2.07              |
| Arsenic                                 | mg/kg      | 10.9             | 11.2             | 8.2              | 11.6               | 14.8           | 10.9             | 10.8             | 6.09             | 5.95             | 10.1B              |
| Barium                                  | mg/kg      | 67.1             | 73.8             | 65.3             | 68.1               | 77.5           | 57.6             | 54               | 52.1             | 57.4             | 54.8               |
| Beryllium                               | mg/kg      | 0.628J           | 0.595J           | 0.45J            | 0.719J             | 0.667          | 0.645            | 0.652            | 0.521J           | 0.468J           | 0.594J             |
| Cadmium                                 | mg/kg      | <1.39            | <1.25            | <1.01            | <1.44              | <1.19          | <1.07            | <1.02            | 0.712J           | <1.16            | <1.38              |
| Chromium (III+VI)                       | mg/kg      | 91.9             | 157              | 111              | 103                | 101            | 93.4             | 94.3             | 84.1             | 117              | 84.6               |
| Cobalt                                  | mg/kg      | 13.5             | 17.5             | 14.9             | 14.9               | 15.1           | 14.1             | 14.6             | 14.2             | 15.3             | 12.8               |
| Copper                                  | mg/kg      | 57.4             | 55               | 45.6             | 58.1               | 77.2           | 34.6             | 35.1             | 39.8             | 57.8             | 49B                |
| Iron                                    | mg/kg      | 41200B           | 41200B           | 31400B           | 45600B             | 42700B         | 40700B           | 43000B           | 30600B           | 32800B           | 39900B             |
| Lead                                    | mg/kg      | 34               | 30.5             | 23.4             | 33.3               | 50.2           | 12.6             | 12.6             | 22.2             | 26.3             | 29.1               |
| Mercury                                 | mg/kg      | 1.89B            | 12.4B            | 2.81B            | 0.318B             | 1.21B          | 0.0894B,J        | 0.0781B,J        | 0.988B           | 1.59B            | 0.406B             |
| Molybdenum                              | mg/kg      | 3.98             | 4.64             | 3.57             | 4.23               | 4.74           | 4.15             | 4.52             | <0.634           | 3.33             | 3.55               |
| Nickel                                  | mg/kg      | 97.7             | 178              | 118              | 102                | 109            | 93.2             | 95.1             | 89.2             | 145              | 86.8               |
| Selenium                                | mg/kg      | <2.08            | <1.87            | <1.51            | <2.16              | <1.78          | <1.6             | <1.53            | <1.9             | <1.75            | <2.07              |
| Silver                                  | mg/kg      | <0.693           | <0.623           | <0.504           | <0.721             | <0.594         | <0.534           | <0.51            | <0.634           | <0.582           | <0.69              |
| Thallium                                | mg/kg      | <2.08            | <1.87            | <1.51            | <2.16              | <1.78          | <1.6             | <1.53            | <1.9             | <1.75            | <2.07              |
| Vanadium                                | mg/kg      | 65.8B            | 68.8B            | 57.2B            | 79.7B              | 73.1B          | 74.7B            | 75B              | 53.4B            | 56.5B            | 63.4               |
| Zinc                                    | mg/kg      | 158              | 161              | 162              | 154                | 185            | 98.2             | 97.2             | 127              | 135              | 139B               |
| PCBs                                    |            |                  |                  |                  |                    |                |                  |                  |                  |                  |                    |
| Aroclor 1016                            | μg/kg      | <27              | <24              | <21              | <28                | <23            | <51              | <19              | <26              | <23              | <28                |
| Aroclor 1221                            | μg/kg      | <27              | <24              | <21              | <28                | <23            | <51              | <19              | <26              | <23              | <28                |
| Aroclor 1232                            | μg/kg      | <27              | <24              | <21              | <28                | <23            | <51              | <19              | <26              | <23              | <28                |
| Aroclor 1242                            | μg/kg      | <27              | <24              | <21              | <28                | <23            | <51              | <19              | <26              | <23              | <28                |
| Aroclor 1248                            | μg/kg      | 25J              | 34               | 28               | <28                | 52             | <51              | <19              | 20J              | 24               | <28                |
| Aroclor 1254                            | μg/kg      | 58               | 68               | 48               | 22J                | 260            | <51              | <19              | 37               | 52               | 35                 |
| Aroclor 1260                            | μg/kg      | 61               | 63               | 46               | 27J                | 140            | 45J              | <19              | 35               | 54               | 31                 |
| Aroclor 1262                            | μg/kg      | <27              | <24              | <21              | <28                | <23            | <51              | <19              | <26              | <23              | <28                |
| Total PCBs                              | μg/kg      | 144              | 165              | 122              | 49                 | 452            | 45               | <19              | 92               | 130              | 66                 |

#### Notes

< = analyte not detected above laboratory reporting limit</pre>

B = analyte was present in an associated method blank

Detected concentrations are bold

J = estimated below laboratory reporting limit

mg/kg = milligrams per kilogram

PCB = polychlorinated biphenyls

SDG = sample delivery group

Total PCBs summations from Aroclors were calculated using 0 for non-detects

μg/kg = micrograms per kilogram

**Table 2**Sediment Sample Analytical Results - Background Subtidal Locations
Sediment Investigation Report
Sims Metal Management, Redwood City, California



|                   | Location   | W2-09              | W2-10             | W4-01              | W4-02            | W4-03            | W4-04              |                | W4-05            |                  |
|-------------------|------------|--------------------|-------------------|--------------------|------------------|------------------|--------------------|----------------|------------------|------------------|
| Sample            | Depth (ft) | 0-0.5              | 0-0.5             | 0-0.5              | 0-0.5            | 0-0.5            | 0-0.5              | 0-0.5          | 1.5-2            | 2.5-3            |
| Sa                | mple Date  | 6/14/2016          | 6/14/2016         | 6/10/2016          | 6/10/2016        | 6/10/2016        | 6/9/2016           | 6/9/2016       | 6/9/2016         | 6/9/2016         |
|                   | Field ID   | W2-9-SED-10.0-10.5 | W2-10-SED-6.8-7.3 | W4-1-SED-11.8-12.3 | W4-2-SED-8.5-9.0 | W4-3-SED-4.0-4.5 | W4-4-SED-12.8-13.3 | W4-5-SED-0-0.5 | W4-5-SED-1.5-2.0 | W4-5-SED-2.5-3.0 |
|                   | SDG        | 16-06-1302         | 16-06-1302        | 16-06-0862         | 16-06-0862       | 16-06-0862       | 16-06-0863         | 16-06-0863     | 16-06-0863       | 16-06-0863       |
| Inorganics        |            |                    |                   |                    |                  |                  |                    |                |                  |                  |
| Moisture          | %          | 63                 | 59                | 65                 | 64               | 64               | 64                 | 60             | 60               | 59               |
| Metals            |            |                    |                   |                    |                  |                  |                    |                |                  |                  |
| Aluminum          | mg/kg      | 27300B             | 25700B            | 28300B             | 26000B           | 24700B           | 27100B             | 26600B         | 24600B           | 27200B           |
| Antimony          | mg/kg      | <2.03              | <1.91             | <2.15              | <2.09            | <2.04            | <2.18              | <1.88          | <1.97            | <1.87            |
| Arsenic           | mg/kg      | 8.16B              | 6.65B             | 9.91               | 9.47             | 7.21             | 8.65               | 8.37           | 10.1             | 11.2             |
| Barium            | mg/kg      | 61.4               | 61.5              | 64.4               | 59.6             | 75.8             | 60.4               | 61             | 59.5             | 57               |
| Beryllium         | mg/kg      | 0.61J              | 0.503J            | 0.777              | 0.703            | 0.659J           | 0.722J             | 0.715          | 0.677            | 0.721            |
| Cadmium           | mg/kg      | <1.35              | <1.27             | 0.71J              | 0.74J            | 0.784J           | 0.618J             | 0.857J         | 1.24J            | 1.18J            |
| Chromium (III+VI) | mg/kg      | 96.4               | 116               | 106                | 97.5             | 94.6             | 97.7               | 103            | 97.1             | 103              |
| Cobalt            | mg/kg      | 13.6               | 14.5              | 18.6               | 17.6             | 17.5             | 17.9               | 18.4           | 17.9             | 18.6             |
| Copper            | mg/kg      | 52.1B              | 46.1B             | 60.7               | 56.1             | 61.4             | 57.4               | 66.6           | 66.5             | 64               |
| Iron              | mg/kg      | 41800B             | 34400B            | 44000B             | 41000B           | 38600B           | 41100B             | 41400B         | 39600B           | 41200B           |
| Lead              | mg/kg      | 31.1               | 24                | 33.3               | 30.1             | 38.8             | 37.9               | 40.1           | 53.4             | 48.4             |
| Mercury           | mg/kg      | 0.699B             | 3.04B             | 0.223J             | 0.239            | 0.438            | <0.234             | 0.384          | 0.519            | 0.46             |
| Molybdenum        | mg/kg      | 4.04               | 3.58              | <0.715             | <0.698           | <0.679           | <0.728             | <0.628         | <0.658           | <0.624           |
| Nickel            | mg/kg      | 105                | 139               | 107                | 98.8             | 96.3             | 98                 | 106            | 98.8             | 110              |
| Selenium          | mg/kg      | <2.03              | <1.91             | <2.15              | <2.09            | <2.04            | <2.18              | <1.88          | <1.97            | <1.87            |
| Silver            | mg/kg      | <0.676             | <0.635            | 0.384J             | 0.437J           | <0.679           | <0.728             | 0.622J         | 1.21             | 0.816            |
| Thallium          | mg/kg      | <2.03              | <1.91             | <2.15              | <2.09            | <2.04            | <2.18              | <1.88          | <1.97            | 0.386J           |
| Vanadium          | mg/kg      | 65.8               | 61.8              | 80.3               | 73.4             | 69.3             | 75.7               | 75.7           | 75.8             | 79.6             |
| Zinc              | mg/kg      | 147B               | 134B              | 158B               | 148B             | 163B             | 142B               | 166B           | 169B             | 168B             |
| PCBs              |            |                    |                   |                    |                  |                  |                    | •              |                  |                  |
| Aroclor 1016      | μg/kg      | <27                | <24               | <29                | <27              | <28              | <28                | <25            | <25              | <24              |
| Aroclor 1221      | μg/kg      | <27                | <24               | <29                | <27              | <28              | <28                | <25            | <25              | <24              |
| Aroclor 1232      | μg/kg      | <27                | <24               | <29                | <27              | <28              | <28                | <25            | <25              | <24              |
| Aroclor 1242      | μg/kg      | <27                | <24               | <29                | <27              | <28              | <28                | <25            | <25              | <24              |
| Aroclor 1248      | μg/kg      | 20J                | 30                | <29                | <27              | 33               | <28                | 86             | 17J              | <24              |
| Aroclor 1254      | μg/kg      | 84                 | 84                | <29                | 19J              | 36               | <28                | 90             | 22J              | <24              |
| Aroclor 1260      | μg/kg      | 76                 | 86                | 35                 | 27J              | 41               | 52                 | 43             |                  |                  |
| Aroclor 1262      | μg/kg      | <27                | <24               | <29                | <27              | <28              | <28                | <25            | <25              | <24              |
| Total PCBs        | μg/kg      | 180                | 200               | 35                 | 46               | 110              | 52                 | 219            | 72               | 23               |

#### Notes

< = analyte not detected above laboratory reporting limit

B = analyte was present in an associated method blank

Detected concentrations are bold

J = estimated below laboratory reporting limit

mg/kg = milligrams per kilogram

PCB = Polychlorinated biphenyls

SDG = Sample delivery group

Total PCBs summations from Aroclors were calculated using 0 for Non-Detects

μg/kg = micrograms per kilogram

**Table 2**Sediment Sample Analytical Results - Background Subtidal Locations
Sediment Investigation Report
Sims Metal Management, Redwood City, California



|                   | Location   | W4-06            | W4-07            | W4-08             | W4-09            | W4-10             | W5-01              | W5-02             | W5-03             | W5-04             |
|-------------------|------------|------------------|------------------|-------------------|------------------|-------------------|--------------------|-------------------|-------------------|-------------------|
| Sample            | Depth (ft) | 0-0.5            | 0-0.5            | 0-0.5             | 0-0.5            | 0-0.5             | 0-0.5              | 0-0.5             | 0-0.5             | 0-0.5             |
| Sai               | mple Date  | 6/9/2016         | 6/9/2016         | 6/10/2016         | 6/10/2016        | 6/10/2016         | 6/14/2016          | 6/14/2016         | 6/14/2016         | 6/15/2016         |
|                   | Field ID   | W4-6-SED-7.5-8.0 | W4-7-SED-4.4-4.9 | W4-8-SED-9.6-10.1 | W4-9-SED-6.7-7.2 | W4-10-SED-2.4-2.9 | W5-1-SED-21.4-21.9 | V5-2-SED-14.5-15. | W5-3-SED-9.6-10.1 | W5-4-SED-25.8-26. |
|                   | SDG        | 16-06-0863       | 16-06-0863       | 16-06-0862        | 16-06-0862       | 16-06-0862        | 16-06-1302         | 16-06-1302        | 16-06-1302        | 16-06-1304        |
| norganics         |            |                  |                  |                   |                  |                   |                    |                   |                   |                   |
| Moisture          | %          | 65               | 61               | 66                | 64               | 61                | 65                 | 65                | 68                | 66                |
| Vietals           |            |                  |                  |                   |                  |                   |                    |                   |                   |                   |
| Aluminum          | mg/kg      | 27100B           | 22400B           | 25200B            | 26500B           | 23700B            | 32900B             | 32400B            | 38200B            | 27100             |
| Antimony          | mg/kg      | <2.19            | <1.88            | <2.11             | <2.20            | <1.95             | <2.16              | <2.14             | <2.35             | <2.29             |
| Arsenic           | mg/kg      | 8.32             | 7.3              | 8.51              | 7.31             | 7.63              | 9.88B              | 10.3B             | 10.8B             | 9.07              |
| Barium            | mg/kg      | 60.8             | 80               | 56.8              | 58.4             | 95.3              | 68.4               | 66                | 76.1              | 60.5              |
| Beryllium         | mg/kg      | 0.742            | 0.622J           | 0.704J            | 0.706J           | 0.635J            | 0.739              | 0.731             | 0.79              | 0.716J            |
| Cadmium           | mg/kg      | 0.709J           | 2.79             | 0.592J            | 0.588J           | 0.918J            | <1.44              | <1.43             | <1.56             | 0.538J            |
| Chromium (III+VI) | mg/kg      | 99.9             | 93.2             | 94.7              | 97.9             | 103               | 103                | 102               | 114               | 99.3              |
| Cobalt            | mg/kg      | 17.8             | 17.2             | 17.3              | 17.8             | 18.6              | 14.1               | 13.5              | 15.6              | 18.3              |
| Copper            | mg/kg      | 57.5             | 99.6             | 56.7              | 56.7             | 94.9              | 60.8B              | 57.6B             | 62.1B             | 57.6              |
| Iron              | mg/kg      | 42500B 35900B    |                  | 40300B            | 41000B           | 38000B            | 45000B             | 44800B            | 48900B            | 43000B            |
| Lead              | mg/kg      | 31.3             |                  |                   | 31.6             | 80.3              | 33.7               | 31                | 32.5              | 31.6              |
| Mercury           | mg/kg      | <0.252           | 0.537            | 0.245             | 0.244            | 0.607             | 0.336B             | 0.31B             | 0.305B            | 0.225J            |
| Molybdenum        | mg/kg      | <0.729           | <0.627           | <0.705            | <0.733           | 0.642J            | 4.24               | 4.32              | 5.01              | <0.764            |
| Nickel            | mg/kg      | 100              | 95.6             | 96.2              | 98.5             | 98.6              | 101                | 102               | 111               | 99.2              |
| Selenium          | mg/kg      | <2.19            | <1.88            | <2.11             | <2.20            | <1.95             | <2.16              | <2.14             | <2.35             | <2.29             |
| Silver            | mg/kg      | <0.729           | 0.388J           | <0.705            | <0.733           | <0.649            | <0.718             | <0.714            | <0.782            | <0.764            |
| Thallium          | mg/kg      | <2.19            | <1.88            | <2.11             | <2.20            | <1.95             | <2.16              | <2.14             | <2.35             | 0.547J            |
| Vanadium          | mg/kg      | 75.6             | 65.3             | 71.7              | 73.8             | 69                | 77.9               | 75.6              | 88                | 74.6              |
| Zinc              | mg/kg      | 146B             | 169B             | 140B              | 143B             | 200B              | 159B               | 150B              | 161B              | 154B              |
| PCBs              |            | ·                |                  |                   | ,                |                   |                    | •                 |                   |                   |
| Aroclor 1016      | μg/kg      | <29              | <26              | <29               | <28              | <26               | <28                | <29               | <31               | <29               |
| Aroclor 1221      | μg/kg      | <29              | <26              | <29               | <28              | <26               | <28                | <29               | <31               | <29               |
| Aroclor 1232      | μg/kg      | <29              | <26              | <29               | <28              | <26               | <28                | <29               | <31               | <29               |
| Aroclor 1242      | μg/kg      | <29              | <26              | <29               | <28              | <26               | <28                | <29               | <31               | <29               |
| Aroclor 1248      | μg/kg      | 18J              | 29               | <29               | <28              | 52                | <28                | <29               | <31               | <29               |
| Aroclor 1254      | μg/kg      | 20J              | 41               | <29               | 19J              | 110               | 23J                | 20J               | <31               | 21J               |
| Aroclor 1260      | μg/kg      | 32               | 60               | 34                | 32               | 97                | 46                 | 35                | 30J               | 36                |
| Aroclor 1262      | μg/kg      | <29              | <26              | <29               | <28              | <26               | <28                | <29               | <31               | <29               |
| Total PCBs        | μg/kg      | 70               | 130              | 34                | 51               | 259               | 69                 | 55                | 30                | 57                |

#### Notes

< = analyte not detected above laboratory reporting limit</pre>

B = analyte was present in an associated method blank

Detected concentrations are bold

J = estimated below laboratory reporting limit

mg/kg = milligrams per kilogram

PCB = Polychlorinated biphenyls

SDG = Sample delivery group

Total PCBs summations from Aroclors were calculated using 0 for Non-Detects

μg/kg = micrograms per kilogram

**Table 2**Sediment Sample Analytical Results - Background Subtidal Locations
Sediment Investigation Report
Sims Metal Management, Redwood City, California



|                   | Location   |                | W5-05            |                   | W5-06              | W5-07            | W5-08              | W5-09              | W5-10            |
|-------------------|------------|----------------|------------------|-------------------|--------------------|------------------|--------------------|--------------------|------------------|
| Sample I          | Depth (ft) | 0-0.5          | 1.5-2            | 2-2.25            | 0-0.5              | 0-0.5            | 0-0.5              | 0-0.5              | 0-0.5            |
| San               | nple Date  | 6/15/2016      | 6/15/2016        | 6/15/2016         | 6/14/2016          | 6/14/2016        | 6/15/2016          | 6/15/2016          | 6/15/2016        |
|                   | Field ID   | W5-5-SED-0-0.5 | W5-5-SED-1.5-2.0 | W5-5-SED-2.0-2.25 | W5-6-SED-12.1-12.6 | W5-7-SED-9.4-9.9 | W5-8-SED-18.3-18.8 | W5-9-SED-10.4-10.9 | W5-10-SED-6.7-7. |
|                   | SDG        | 16-06-1304     | 16-06-1304       | 16-06-1304        | 16-06-1302         | 16-06-1302       | 16-06-1304         | 16-06-1304         | 16-06-1304       |
| norganics         |            |                |                  |                   |                    |                  |                    |                    |                  |
| Moisture          | %          | 60             | 45               | 46                | 65                 | 65               | 65                 | 62                 | 69               |
| Vietals           |            |                |                  |                   |                    |                  |                    |                    |                  |
| Aluminum          | mg/kg      | 28800          | 26100            | 27600             | 31600B             | 35600B           | 28000              | 29700              | 33000            |
| Antimony          | mg/kg      | <1.95          | <1.42            | <1.39             | <2.17              | <2.16            | <2.27              | <2.07              | <2.36            |
| Arsenic           | mg/kg      | 8.11           | 4.76             | 6.98              | 12B                | 9.88B            | 8.76               | 8.54               | 8.02             |
| Barium            | mg/kg      | 60.1           | 44.5             | 47.1              | 62.6               | 75.2             | 60.8               | 53.2               | 68.5             |
| Beryllium         | mg/kg      | 0.699          | 0.634            | 0.648             | 0.686J             | 0.724            | 0.721J             | 0.735              | 0.83             |
| Cadmium           | mg/kg      | 0.794J         | 0.607J           | 0.625J            | <1.45              | <1.44            | 0.678J             | 0.718J             | 0.912J           |
| Chromium (III+VI) | mg/kg      | 102            | 92.7             | 94.2              | 102                | 106              | 101                | 105                | 116              |
| Cobalt            | mg/kg      | 19.4           | 18.7             | 18.8              | 14                 | 15               | 18.9               | 19.9               | 21.3             |
| Copper            | mg/kg      | 56.3           | 41               | 40.6              | 49.4B              | 55.8B            | 59.8               | 49.6               | 70.5             |
| Iron              | mg/kg      | 43600B         | 40500B           | 42200B            | 44500B             | 46900B           | 44200B             | 45800B             | 48000B           |
| Lead              | mg/kg      | 23.5           | 11.4             | 11.2              | 25.1               | 29.9             | 30.7               | 20.7               | 34.6             |
| Mercury           | mg/kg      | 0.103J         | 0.0295J          | 0.032J            | 0.217B,J           | 0.228B,J         | 0.207J             | 0.115J             | 0.303            |
| Molybdenum        | mg/kg      | 0.767          | <0.473           | <0.463            | 4.46               | 4.89             | <0.756             | <0.689             | <0.786           |
| Nickel            | mg/kg      | 103            | 98.4             | 98.4              | 101                | 106              | 103                | 108                | 115              |
| Selenium          | mg/kg      | <1.95          | •                | 2.64              | <2.17              | <2.16            | <2.27              | <2.07              | <2.36            |
| Silver            | mg/kg      | <0.65          | <0.473           | < 0.463           | <0.723             | <0.722           | <0.756             | 0.24J              | <0.786           |
| Thallium          | mg/kg      | <1.95          | <1.42            | <1.39             | <2.17              | <2.16            | <2.27              | <2.07              | <2.36            |
| Vanadium          | mg/kg      | 80             | 73.7             | 76.1              | 76.5               | 82               | 75.9               | 80.5               | 87.9             |
| Zinc              | mg/kg      | 141B           | 106B             | 104B              | 162B               | 157B             | 167B               | 135B               | 190B             |
| PCBs              |            |                |                  | •                 |                    | ·                |                    | -                  |                  |
| Aroclor 1016      | μg/kg      | <25            | <18              | <19               | <28                | <29              | <28                | <27                | <32              |
| Aroclor 1221      | μg/kg      | <25            | <18              | <19               | <28                | <29              | <28                | <27                | <32              |
| Aroclor 1232      | μg/kg      | <25            | <18              | <19               | <28                | <29              | <28                | <27                | <32              |
| Aroclor 1242      | μg/kg      | <25            | <18              | <19               | <28                | <29              | <28                | <27                | <32              |
| Aroclor 1248      | μg/kg      | 23J            | <18              | <19               | <28                | <29              | 19J                | <27                | <32              |
| Aroclor 1254      | μg/kg      | <b>16</b> J    | <18              | <19               | 48                 | 19J              | 23J                | <27                | 27J              |
| Aroclor 1260      | μg/kg      | 33             | <18              | <19               | 44                 | 29               | 44                 | 26J                | 47               |
| Aroclor 1262      | μg/kg      | <25            | <18              | <19               | <28                | <29              | <28                | <27                | <32              |
| Total PCBs        | μg/kg      | 72             | <18              | <19               | 92                 | 48               | 86                 | 26                 | 74               |

#### NI - 4 - -

< = analyte not detected above laboratory reporting limit</pre>

B = analyte was present in an associated method blank

Detected concentrations are bold

J = estimated below laboratory reporting limit

mg/kg = milligrams per kilogram

PCB = Polychlorinated biphenyls

SDG = Sample delivery group

Total PCBs summations from Aroclors were calculated using 0 for Non-Detects

μg/kg = micrograms per kilogram

Terraphase Engineering Inc.

Page 4 of 4

**Table 3**Statistical Evaluation - Background Subtidal Sediment Data Sediment Investigation Report
Sims Metal Management, Redwood City, California



|        |            |       | Number<br>Samples | Number<br>Detects | Min    | Max   | Mean  | St Dev | 95% UCL<br>Concentration<br>Background | 95% UTL<br>Concentration<br>Background |
|--------|------------|-------|-------------------|-------------------|--------|-------|-------|--------|----------------------------------------|----------------------------------------|
| Metals | Aluminum   | mg/kg | 36                | 36                | 20800  | 38200 | 27975 | 4072   | 29122                                  | 37789                                  |
|        | Antimony   | mg/kg | 36                | 1                 | <1.39  | 4.81  | 0.13  | 0.8    | NC                                     | NC                                     |
|        | Arsenic    | mg/kg | 36                | 36                | 4.76   | 14.8  | 9.1   | 2      | 9.63                                   | 13.37                                  |
|        | Barium     | mg/kg | 36                | 36                | 44.5   | 95.3  | 63    | 9.9    | 66.19                                  | 84.69                                  |
|        | Beryllium  | mg/kg | 36                | 36                | 0.45   | 0.83  | 0.67  | 0.085  | 0.693                                  | 0.852                                  |
|        | Cadmium    | mg/kg | 36                | 20                | 0.538  | 2.79  | 0.48  | 0.57   | 0.926                                  | 2.79                                   |
|        | Chromium   | mg/kg | 36                | 36                | 84.1   | 157   | 102   | 12     | 105.7                                  | 157                                    |
|        | Cobalt     | mg/kg | 36                | 36                | 12.8   | 21.3  | 17    | 2.2    | 17.23                                  | 21.3                                   |
|        | Copper     | mg/kg | 36                | 36                | 34.6   | 99.6  | 57    | 14     | 61.3                                   | 90.98                                  |
|        | Iron       | mg/kg | 36                | 36                | 30600  | 48900 | 41314 | 4232   | 42506                                  | 48900                                  |
|        | Lead       | mg/kg | 36                | 36                | 11.2   | 80.3  | 32    | 13     | 35.39                                  | 51.68                                  |
|        | Mercury    | mg/kg | 36                | 34                | 0.0295 | 12.4  | 0.88  | 2.1    | 3.077                                  | 4.958                                  |
|        | Molybdenum | mg/kg | 36                | 18                | <0.463 | 5.01  | 1.9   | 2.1    | 2.689                                  | 5.01                                   |
|        | Nickel     | mg/kg | 36                | 36                | 86.8   | 178   | 106   | 17     | 110.7                                  | 178                                    |
|        | Selenium   | mg/kg | 35                | 1                 | <1.51  | 2.64  | 0.075 | 0.45   | NC                                     | NC                                     |
|        | Silver     | mg/kg | 36                | 7                 | 0.24   | 1.21  | 0.11  | 0.27   | 0.501                                  | 0.806                                  |
|        | Thallium   | mg/kg | 36                | 2                 | 0.386  | 0.547 | 0.026 | 0.11   | NC                                     | NC                                     |
|        | Vanadium   | mg/kg | 36                | 36                | 53.4   | 88    | 73    | 7.9    | 75.27                                  | 90.11                                  |
|        | Zinc       | mg/kg | 36                | 36                | 97.2   | 200   | 150   | 23     | 156.5                                  | 200.1                                  |
| CBs    | Total PCBs | μg/kg | 36                | 33                | <18    | 452   | 93    | 87     | 157.1                                  | 395                                    |

#### Notes:

mg/kg = miligrams per kilogram

μg/kg = micrograms per kilogram

Metals = Title 22 Metals, aluminum, iron

NC = not calculated

PCB = polychlorinated biphenyls

St Dev = standard deviation

UCL = upper confidence limit

UTL = upper tolerance limit

95% UCL = 95-percent upper confidence limit on the mean

95% UTL = 95-percent upper tolerance limit on the mean

**Table 4**Sediment Sample Analytical Results - Background Riprap Locations
Sediment Investigation Report
Sims Metal Management, Redwood City, California



|                   | Location   | W2-11           | W2-12           | W2-13               | W2-14           | W2-15           | W2-16           | W4-11           | W4-12           | W4-13           | W4-14           | W4-15           | W4-16           | W5-11           | W5-12           | W5-13           | W5-14           | W5-15           | W5-16           |
|-------------------|------------|-----------------|-----------------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Sample            | Depth (ft) | 0-0.5           | 0-0.5           | 0-0.5               | 0-0.5           | 0-0.5           | 0-0.5           | 0-0.5           | 0-0.5           | 0-0.5           | 0-0.5           | 0-0.5           | 0-0.5           | 0-0.5           | 0-0.5           | 0-0.5           | 0-0.5           | 0-0.5           | 0-0.5           |
| Sar               | mple Date  | 3/9/2017        | 3/9/2017        | 3/9/2017            | 3/9/2017        | 3/9/2017        | 3/9/2017        | 3/9/2017        | 3/9/2017        | 3/9/2017        | 3/9/2017        | 3/9/2017        | 3/9/2017        | 3/14/2017       | 3/14/2017       | 3/14/2017       | 3/14/2017       | 3/14/2017       | 3/14/2017       |
|                   | Field ID   | W2-11-SED-0-0.5 | W2-12-SED-0-0.5 | W2-13-SED-0-0.5     | W2-14-SED-0-0.5 | W2-15-SED-0-0.5 | W2-16-SED-0-0.5 | W4-11-SED-0-0.5 | W4-12-SED-0-0.5 | W4-13-SED-0-0.5 | W4-14-SED-0-0.5 | W4-15-SED-0-0.5 | W4-16-SED-0-0.5 | W5-11-SED-0-0.5 | W5-12-SED-0-0.5 | W5-13-SED-0-0.5 | W5-14-SED-0-0.5 | W5-15-SED-0-0.5 | W5-16-SED-0-0.5 |
|                   | SDG        | 17-03-0879      | 17-03-0879      | 17-03-0879          | 17-03-0879      | 17-03-0879      | 17-03-0879      | 17-03-0879      | 17-03-0879      | 17-03-0879      | 17-03-0879      | 17-03-0879      | 17-03-0879      | 17-03-1186      | 17-03-1186      | 17-03-1186      | 17-03-1186      | 17-03-1186      | 17-03-1186      |
| organics          |            |                 | ,               |                     | ,               | ,               |                 |                 |                 | ·               |                 |                 | ·               |                 | r               |                 | ,               | ,               |                 |
| Moisture          | %          | 53              | 34              | 46                  | 38              | 50              | 44              | 61              | 64              | 63              | 60              | 65              | 60              | 64              | 58              | 64              | 63              | 69              | 61              |
| etals             |            |                 |                 |                     | ·               | ·               | ·               | ·               |                 | ·               |                 |                 | ·               |                 |                 |                 | Ţ               | ·               |                 |
| Aluminum          | mg/kg      | 16700           | 11100           | 16500               | 16900           | 16500           | 17300           | 24600           | 20200           | 21300           | 22800           | 24000           | 22300           | 28400           | 20600           | 25300           | 27300           | 35500           | 29000           |
| Antimony          | mg/kg      | <1.63           | <1.13           | <1.45               | <1.21           | <1.53           | <1.31           | <1.9            | <2.04           | <2.02           | <1.83           | <2.04           | <1.94           | <2.06           | <1.81           | <2.07           | <1.94           | <2.37           | <1.86           |
| Arsenic           | mg/kg      | 10.4            | 5.78            | 9.92                | 8.84            | 8.73            | 7.14            | 13.2            | 16.2            | 13.1            | 13.6            | 12.4            | 14.6            | 16.2            | 21.3            | 16.2            | 17.2            | 18.2            | 13.2            |
| Barium            | mg/kg      | 5 <del>9</del>  | 64              | 82.7                | 93.1            | 43.2            | 76.8            | 83.2            | 242             | 106             | 137             | 81.5            | 110             | 138             | 155             | 145             | 114             | 123             | 101             |
| Beryllium         | mg/kg      | 0.384J          | 0.206J          | 0.32 <del>9</del> J | 0.272J          | 0.346J          | 0.335J          | 0.645           | 0.496J          | 0.573J          | 0.594J          | 0.635J          | 0.57J           | 0.576J          | 0.419J          | 0.524J          | 0.558J          | 0.725J          | 0.62            |
| Cadmium           | mg/kg      | 1.15            | 0.771           | 1.22                | 0.931           | 1.05            | 0.891           | 1.74            | 2.14            | 2.03            | 1.65            | 1.66            | 1.92            | 1.94            | 2.1             | 1.67            | 1.49            | 1.91            | 1.17J           |
| Chromium (III+VI) | mg/kg      | 119             | 60.6            | 114                 | 69.8            | 111             | 79.1            | 99.1            | 93              | 90.4            | 96.5            | 97.9            | 93.2            | 94.2            | 79              | 86.4            | 95.8            | 114             | 95.2            |
| Cobalt            | mg/kg      | 20              | 13.4            | 21.1                | 17.9            | 18.7            | 17.7            | 21.9            | 21.1            | 19.3            | 23.9            | 21              | 22.5            | 19.9            | 18              | 19.3            | 22.1            | 25.7            | 21.6            |
| Copper            | mg/kg      | 75.1            | 48.9            | 48.4                | 67.9            | 63.8            | 56.5            | 86.4            | 105             | 77.7            | 146             | 88.4            | 107             | 75.7            | 165             | 135             | 83.7            | 124             | 71              |
| Iron              | mg/kg      | 30400B          | 21900B          | 31200B              | 26100B          | 34700B          | 28300B          | 41500B          | 39500B          | 38000B          | 39900B          | 40600B          | 39200B          | 38100B          | 30200B          | 33300B          | 38700B          | 44900B          | 37000B          |
| Lead              | mg/kg      | 22.2            | 17.5            | 27.1                | 23.7            | 19.4            | 23              | 48.5            | 86.1            | 70.7            | 77.3            | 57              | 106             | 59.5            | 174             | 55.3            | 79.9            | 53.2            | 46.2            |
| Mercury           | mg/kg      | 23.8            | 1.9             | 4.84                | 5.78            | 0.397           | 13.8            | 0.319           | 0.294           | 0.314           | 0.512           | 0.298           | 0.349           | 0.357           | 0.279           | 0.26            | 0.229           | 0.279           | 0.321           |
| Molybdenum        | mg/kg      | 0.68            | 0.295J          | 0.606               | 1.61            | 2.52            | 0.623           | 1.79            | 2.11            | 2.71            | 1.34            | 2.04            | 1.27            | 2.31            | 3.86            | 2.08            | 1.85            | 1.77            | 0.801           |
| Nickel            | mg/kg      | 140             | 86.2            | 129                 | 96.6            | 132             | 109             | 106             | 99.4            | 96.2            | 120             | 106             | 107             | 95.8            | 75.5            | 89.1            | 100             | 117             | 101             |
| Selenium          | mg/kg      | <1.63           | <1.13           | <1.45               | <1.21           | <1.53           | <1.31           | <1.9            | <2.04           | <2.02           | 1.09J           | <2.04           | <1.94           | <2.06           | 1.19J           | 1.2J            | 1.79J           | <2.37           | <1.86           |
| Silver            | mg/kg      | <0.542          | 0.312J          | <0.483              | <0.404          | <0.51           | 0.306J          | 0.759           | 0.721           | 0.353J          | 0.771           | 0.496J          | 0.375J          | 0.892           | 1.46            | 0.708           | 0.955           | 0.872           | 0.699           |
| Thallium          | mg/kg      | <1.63           | <1.13           | <1.45               | <1.21           | <1.53           | <1.31           | <1.9            | <2.04           | <2.02           | <1.83           | <2.04           | <1.94           | <2.06           | 0.477J          | <2.07           | <1.94           | <2.37           | <1.86           |
| Vanadium          | mg/kg      | 58.3            | 42.6            | 59.3                | 50              | 51.1            | 55.4            | 76.9            | 66.5            | 69              | 72.5            | 74.3            | 70.7            | 80              | 62.1            | 73.2            | 77.5            | 94.9            | 77.5            |
| Zinc              | mg/kg      | 154B            | 143B            | 177B                | 143B            | 159B            | 145B            | 290B            | 559B            | 331B            | 517B            | 296B            | 602B            | 303             | 480             | 268             | 370             | 289             | 240             |
| Bs                | 1 5 5      |                 |                 |                     | A               | L               | A               | ·····           |                 | A               |                 |                 | <b></b>         |                 |                 |                 | J               | 4               |                 |
| Aroclor 1016      | μg/kg      | <21             | <15             | <37                 | <16             | <20             | <18             | <25             | <28             | <27             | <25             | <28             | <25             | <28             | <24             | <28             | <27             | <65             | <26             |
| Aroclor 1221      | μg/kg      | <21             | <15             | <37                 | <16             | <20             | <18             | <25             | <28             | <27             | <25             | <28             | <25             | <28             | <24             | <28             | <27             | <65             | <26             |
| Aroclor 1232      | μg/kg      | <21             | <15             | <37                 | <16             | <20             | <18             | <25             | <28             | <27             | <25             | <28             | <25             | <28             | <24             | <28             | <27             | <65             | <26             |
| Aroclor 1242      | μg/kg      | <21             | <15             | <37                 | <16             | <20             | <18             | <25             | <28             | <27             | <25             | <28             | <25             | <28             | <24             | <28             | <27             | <65             | <26             |
| Aroclor 1248      | μg/kg      | 70              | 34              | 140                 | 34              | 110             | 31              | 88              | 330             | 200             | 210             | 130             | 370             | 120             | 290             | 120             | 100             | 140             | 72              |
| Aroclor 1254      | μg/kg      | 270             | 51              | 470                 | 48              | 220             | 37              | 72              | 280             | 180             | 140             | 140             | 260             | 220             | 310             | 290             | 240             | 810             | 85              |
| Aroclor 1260      | μg/kg      | 200             | 37              | 220                 | 42              | 190             | 88              | 66              | 200             | 130             | 110             | 110             | 190             | 88              | 110             | 130             | 94              | 240             | 58              |
| Aroclor 1262      | μg/kg      | <21             | <15             | <37                 | <16             | <20             | <18             | <25             | <28             | <27             | <25             | <28             | <25             | <28             | <24             | <28             | <27             | <65             | <26             |
| Total PCBs        | ug/kg      | 540             | 120             | 820                 | 120             | 520             | 160             | 230             | 820             | 510             | 460             | 380             | 810             | 430             | 710             | 540             | 430             | 1200            | 210             |

#### Notes:

< = analyte not detected above laboratory reporting limit

B = analyte was present in an associated method blank

Detected concentrations are **bold** 

J = estimated below laboratory reporting limit mg/kg = milligrams per kilogram

PCB = polychlorinated biphenyls

SDG = sample delivery group Total PCBs summations from Aroclors were calculated using 0 for non-detects

μg/kg = micrograms per kilogram

## **Table 5**Statistical Evaluation - Background Subtidal Sediment Data Sediment Investigation Report Sims Metal Management, Redwood City, California



|        |            |       | Number<br>Samples | Number<br>Detects | Min   | Max   | Mean  | Median | St Dev | 95% UCL<br>Concentration<br>Background | 95% UTL<br>Concentration<br>Background |
|--------|------------|-------|-------------------|-------------------|-------|-------|-------|--------|--------|----------------------------------------|----------------------------------------|
| Metals | Aluminum   | mg/kg | 18                | 18                | 11100 | 35500 | 22017 | 21800  | 5860   | 24,420                                 | 36,392                                 |
|        | Antimony   | mg/kg | 18                | 0                 | <1.13 | <2.37 | 0.9   | 0.9    | 0.2    | NC                                     | NC                                     |
|        | Arsenic    | mg/kg | 18                | 18                | 5.78  | 21.3  | 13    | 13.2   | 4.1    | 14.8                                   | 23.18                                  |
|        | Barium     | mg/kg | 18                | 18                | 43.2  | 242   | 109   | 103.5  | 46     | 127.3                                  | 220.3                                  |
|        | Beryllium  | mg/kg | 18                | 18                | 0.206 | 0.725 | 0.49  | 0.541  | 0.15   | 0.55                                   | 0.851                                  |
|        | Cadmium    | mg/kg | 18                | 18                | 0.771 | 2.14  | 1.5   | 1.655  | 0.45   | 1.709                                  | 2.629                                  |
|        | Chromium   | mg/kg | 18                | 18                | 60.6  | 119   | 94    | 94.7   | 15     | 100.1                                  | 131.4                                  |
|        | Cobalt     | mg/kg | 18                | 18                | 13.4  | 25.7  | 20    | 20.5   | 2.7    | 21.4                                   | 26.97                                  |
|        | Copper     | mg/kg | 18                | 18                | 48.4  | 165   | 90    | 80.7   | 34     | 104.1                                  | 172.7                                  |
|        | Iron       | mg/kg | 18                | 18                | 21900 | 44900 | 35194 | 37500  | 6071   | 37,684                                 | 50,085                                 |
|        | Lead       | mg/kg | 18                | 18                | 17.5  | 174   | 58    | 54.25  | 39     | 74.05                                  | 153.3                                  |
|        | Mercury    | mg/kg | 18                | 18                | 0.229 | 23.8  | 3     | 0.335  | 6.2    | 17.57                                  | 23.8                                   |
|        | Molybdenum | mg/kg | 18                | 18                | 0.295 | 3.86  | 1.7   | 1.78   | 0.9    | 2.049                                  | 3.883                                  |
|        | Nickel     | mg/kg | 18                | 18                | 75.5  | 140   | 106   | 103.5  | 17     | 112.7                                  | 146.6                                  |
|        | Selenium   | mg/kg | 18                | 4                 | 1.09  | 1.79  | 0.97  | 0.99   | 0.28   | 1.339                                  | 1.699                                  |
|        | Silver     | mg/kg | 18                | 14                | 0.306 | 1.46  | 0.59  | 0.5975 | 0.34   | 0.745                                  | 1.362                                  |
|        | Thallium   | mg/kg | 18                | 1                 | 0.477 | 0.477 | 0.87  | 0.94   | 0.2    | NC                                     | NC                                     |
|        | Vanadium   | mg/kg | 18                | 18                | 42.6  | 94.9  | 67    | 69.85  | 13     | 72.62                                  | 99                                     |
|        | Zinc       | mg/kg | 18                | 18                | 143   | 602   | 304   | 289.5  | 149    | 364.8                                  | 669.4                                  |
| PCBs   | Total PCBs | μg/kg | 18                | 18                | 120   | 1200  | 501   | 485    | 290    | 619.3                                  | 1211                                   |

#### Notes:

mg/kg = miligrams per kilogram

μg/kg = micrograms per kilogram

Metals = Title 22 Metals, aluminum, iron

NC = not calculated

PCB = polychlorinated biphenyls

St Dev = standard deviation

UCL = upper confidence limit

UTL = upper tolerance limit

95% UCL = 95-percent upper confidence limit on the mean

95% UTL = 95-percent upper tolerance limit on the mean

## Table 6a

Sediment Sample Analytical Results - Project Area, Riprap Locations Sediment Investigation Report Sims Metal Management, Redwood City, California



|          |          |             |              |                 |                      |              | Metals       |          |             |       |           |                  |                   |                 |        |                   |             |         |            |                 |                   |                 |          | PCBs     |               |              |                             |                 |                        |              |                    |                             |                         |               |
|----------|----------|-------------|--------------|-----------------|----------------------|--------------|--------------|----------|-------------|-------|-----------|------------------|-------------------|-----------------|--------|-------------------|-------------|---------|------------|-----------------|-------------------|-----------------|----------|----------|---------------|--------------|-----------------------------|-----------------|------------------------|--------------|--------------------|-----------------------------|-------------------------|---------------|
|          |          |             |              |                 | Screening Levels     | % Moisture   | Mg/kg        | mg/kg    | mg/kg       | mg/kg | Beryllium | Cadmium<br>mg/kg | chromium (III+VI) | Copalt<br>mg/kg | Copper | <b>E</b><br>mg/kg | mg/kg       | Mercury | Molybdenum | Nickel<br>mg/kg | Selenium<br>mg/kg | Silver<br>mg/kg | Thallium | Nanadium | Ziuc<br>mg/kg | Aroclor 1016 | 표<br>장<br>제<br>Aroclor 1221 | my Aroclor 1232 | 자<br>장<br>Aroclor 1242 | Aroclor 1248 | βα<br>Aroclor 1254 | ва<br>жу<br>да Aroclor 1260 | क्षेत्र<br>Aroclor 1262 | дд Lotal PCBs |
|          |          |             |              | 95% UC          | L Riprap Background  | n/a          | 24420        |          | 14.8        | 127.3 | 0.55      | 1.709            | 100.1             | 21.4            | 104.1  | 37684             | 74.05       | 17.57   | 2.049      | 112.7           | 1.339             | 0.745           |          | 72.62    | 364.8         |              |                             |                 |                        |              |                    |                             |                         | 619.3         |
|          |          |             |              | 95% UT          | l. Riprap Background | n/a          | 36392        |          | 23,18       | 220.3 | 0.851     | 2.629            | 131.4             | 26.97           | 1.72.7 | 50035             | 153.3       | 23.8    | 3.883      | 146.6           | 1.699             | 1.362           |          | 99       | 669.4         |              |                             |                 |                        |              |                    |                             |                         | 1211          |
| Sample   | Location | Sample      | 1            |                 |                      |              |              |          |             |       |           |                  |                   |                 |        |                   |             |         |            |                 |                   |                 |          |          |               |              |                             |                 |                        |              |                    |                             |                         |               |
| Туре     |          | <del></del> | Sample Date  | Field ID        | SDG                  | ļ            | 1            |          | т           |       | ·         |                  | Υ                 |                 | T      |                   | <del></del> | 1       |            | т               |                   |                 |          | r        |               |              |                             |                 |                        |              |                    |                             | <del></del>             |               |
|          | W3-10    | 0-0.5       | <del> </del> | W3-10-SED-0-0.5 | 16-06-0657           | <del></del>  | 24600B       |          | 32          |       | 0.676J    | <del> </del>     | 120               | 34.6            | 365    | 60200             | 171         | 1.7     | 2.54       | 765             | <2.31             | 1.38            | <2.31    | 83.3     | 1770          | <31          | <31                         | <31             | <31                    | 100          | 64                 | 140                         |                         | 304           |
|          | W3-11    | 0-0.5       | 6/8/2016     | W3-11-SED-0-0.5 | 16-06-0657           |              | 13800B       |          | 79.5        |       | 0.357J    |                  | 461               | 31.8            | 2320   | 164000            | 379         | 1.27    | 20.2       | 222             | <1.71             | 6               | <1.71    | 82.3     | 4740          |              |                             | +               |                        |              | 800                |                             |                         | 3.670         |
|          | W3-12    | 0-0.5       | 6/8/2016     | W3-12-SED-0-0.5 | 16-06-0657           | <del></del>  | <del> </del> | 0.507B,J | <del></del> | 141   | 0.453     | 2.52             | 261               | 33.5            | 2230   | 141000            | 1120        | 0.448   | 25         | 218             | <1.73             | 1.84            | <1.73    | 80.9     | 3120          |              |                             | <120            |                        |              | 490                |                             |                         | 1670          |
|          | W3-13    | 0-0.5       | 6/8/2016     | W3-13-SED-0-0.5 | 16-06-0657           | <del></del>  | 12100B       | <2.12    | 19.1        | 204   | <0.706    |                  | 228               | 36.3            | 1640   | 193000            | +           | 0.641   | 30.8       | 688             | 1.413             | 1.28            | <2.12    | 60.4     | 4910          |              |                             | +               |                        |              | 600                |                             | <140                    | 1940          |
|          | W3-14    | 0-0.5       | 6/8/2016     | W3-14-SED-0-0.5 | 16-06-0657           | <b>}</b>     | 14300B       | 10.9B    | 1.03        | 491.  | <0.588    | 33.9             | 261               | 64.4            | 1.950  | 181000            | 3.570       | 1.51    | 37.2       | 459             | 2.21              | 5.45            | <1.76    | 64.9     | 11200         |              | <230                        |                 | <del></del>            |              | 1800               |                             | <230                    | 3550          |
|          | W3-15    | 0-0.5       | 6/8/2016     | W3-15-SED-0-0.5 | 16-06-0657           | <del> </del> | 14600B       |          | 73.1        | 591   | 0.468J    | 10.6             | 184               | 46.2            | 2790   | 104000            | 11110       | 2.7     | 12.5       | 348             | <1.59             | 3.54            | <1.59    | 61.7     | 7600          |              | <220                        |                 |                        |              | 1900               |                             | <220                    | 4180          |
|          | W3-16    | 0-0.5       | 6/8/2016     | W3-16-SED-0-0.5 | 16-06-0657           | 54           |              | <1.57    | 15.9        | 346   | 0.554     | 5,43             | 155               | 34.9            | 981    | 74800             | 507         | 1.28    | 6.34       | 241             | 1.17J             | 1.75            | <1.57    | 69.3     | 4250          |              |                             | +               |                        |              | 1600               |                             |                         | 4340          |
|          | W3-17    | 0-0.5       | 6/8/2016     | W3-17-SED-0-0.5 | 16-06-0657           | 53           |              | <1.61    | 19.7        | 421   | 0.4471    |                  | 3.37              | 31              | 1070   | 74100             | 568         | 1.68    | 6.88       | 180             | <1.61             | 1.24            | <1.61    | 60.6     | 4310          |              |                             | +               |                        |              | 2500               |                             |                         | 7520          |
|          | W3-18    | 0-0.5       | 6/8/2016     | W3-18-SED-0-0.5 | 16-06-0657           | <b></b>      | 21800        | <1.62    | 37.8        | 323   | 0.736     | 2.3              | 169               | 30.2            | 379    | 50600             | 311         | 0.761   | 12.9       | 166             | 2.2               | 0.907           | 1.13J    | 68.4     | 2340          |              | <210                        | +               |                        |              | 790                |                             |                         | 2360          |
|          | W3-19    | 0-0.5       | 6/8/2016     | W3-19-SED-0-0.5 | 16-06-0657           | <del> </del> | 25400        | <2.04    | 12.8        | 148   | 0.677J    |                  | 101               | 21.6            | 238    | 41500             | 106         | 0.526   | 3.13       | 108             |                   | 0.403J          | <2.04    | 74.2     | 541           |              | <130                        | +               | <del></del>            |              | 590                |                             | <130                    | 1290          |
| l ig     | W3-20    | 0-0.5       | 6/8/2016     | W3-20-SED-0-0.5 | 16-06-0657           | <del></del>  | 27700        | <1.96    | 20.5        | 120   | 0.709     | 3,51             | 122               | 25              | 185    | 54100             | 152         | 0.798   | 8,43       | 130             |                   | 0.402J          | <1.96    | 80.1     | 955           | <54          | <54                         | <54             | <54                    |              | 370                | 100                         |                         | 1050          |
| Ripra    | W3-21    | 0-0.5       | 6/8/2016     | W3-21-SED-0-0.5 | 16-06-0657           | <b></b>      | 28600        | <2.17    | 11.7        | 99.7  | 0.742     |                  | 107               | 22.7            | 132    | 46300             | 76.9        | 1.45    | 2.43       | 124             |                   | 0.522J          | <2.17    | 81.4     | 572           | <28          | <28                         | <28             | <28                    | 240          | 180                | 120                         | <28                     | 540           |
| <u>~</u> | W3-22    | 0-0.5       | 6/8/2016     | W3-22-SED-0-0.5 | 16-06-0657           | <del></del>  | 7320B        | 16.9B    | 158         | 594   | <0.477    |                  | 163               | 49.1            | 1310   | 199000            | 1450        | 3.92    | 26.2       | 609             | <1.43             |                 | <1.43    | 44.2     | 28500         |              | <360                        | +               | -                      |              |                    |                             | <360                    | 6800          |
|          | W3-23    | 0-0.5       | 6/8/2016     | W3-23-SED-0-0.5 | 16-06-0657           |              | 8440B        | 22.3B    | 118         | 778   | <0.417    |                  | 249               | 64,3            | 3330   | 195000            | 1820        | 4.19    | 35         | 658             | 2.8               | 4,19            | <1.25    | 54.4     | 22800         |              |                             | +               |                        |              |                    |                             |                         | 3600          |
|          | W3-24    | 0-0.5       | 6/8/2016     | W3-24-SED-0-0.5 | 16-06-0657           | <del>{</del> | 10100B       |          | 82.9        | 769   | 0.352J    | ļ                | 280               | 53.3            | 3110   | 146008            | 1620        | 3.44    | 23.2       | 591             | <1.45             | <del> </del>    | <1.45    | 56.7     | 9390          |              |                             | <370            |                        |              |                    |                             |                         | 4880          |
|          | W3-25    | 0-0.5       | 6/8/2016     | W3-25-SED-0-0.5 | 16-06-0657           | ŧ            | 13700        | <1.39    | 12          | 442   | 0.317J    |                  | 113               | 30              | 1270   | 71000             | 71.2        | 1.78    | 18.8       | 189             | <1.39             | 1.13            | <1.39    | 50.6     | 5440          |              | <360                        | +               |                        |              | 2700               |                             |                         | 7760          |
|          | W3-26    | 0-0.5       | 6/8/2016     | W3-26-SED-0-0.5 | 16-06-0657           | <del>}</del> | 20700B       |          | 23,4        |       | 0.618J    |                  | 104               | 21.1            | 212    | 75300             | 77.2        | 0.323   | 2.42       | 122             | <2.02             | 1.24            | <2.02    | 72.5     | 913           | <26          | <26                         | <26             | <26                    | 60           | 52                 | 41                          | <26                     | 153           |
|          | W3-27    | 0-0.5       | 6/8/2016     | W3-27-SED-0-0.5 | 16-06-0657           | <del></del>  | 13100B       | 6.13B    | 68.7        | 219   | <0.647    | 3,33             | 488               | 73.8            | 3970   | 128000            | 614         | 0.562   | 42.7       | 371             | <1.94             | 2.54            | <1.94    | 97.8     | 3610          | <120         | <120                        | +               |                        |              | 620                |                             | <120                    | 2010          |
|          | W3-28    | 0-0.5       | 6/8/2016     | W3-28-SED-0-0.5 | 16-06-0657           | <b>†</b>     | 18000B       | 6.75B    | 46.7        | 243   | 0.553     | 5,38             | 161               | 26.7            | 623    | 81700             | 447         | 0.672   | 7.55       | 180             | 4.3               | 1.5             | <1.62    | 79.8     | 2670          |              | <110                        | +               | <del> </del>           |              | 340                |                             |                         | 1070          |
|          | W3-29    | 0-0.5       | 6/8/2016     | W3-29-SED-0-0.5 | 16-06-0657           | <del></del>  | 16900        | <1.48    | 16.8        | 158   | 0.448J    |                  | 114               | 18.3            | 579    | 46200             | 147         | 0.507   | 3.95       | 98.7            |                   | 0.729           | <1.48    | 54.5     | 919           |              | <100                        | +               | <100                   |              | 560                |                             |                         | 3.500         |
|          | W3-30    | 0-0.5       | 6/8/2016     | W3-30-SED-0-0.5 | 16-06-0657           | 61           | <del> </del> | <1.88    | 12.8        | 92.3  | 0.706     | 0.644J           | 95.7              | 20.8            | 77.7   | 45100             | 51.1        | +       | <0.628     | 101             |                   | <del> </del>    | 0.922J   | 74.3     | 342           | <25          | <25                         | <25             | <25                    | 93           | 85                 | 64                          | <25                     | 242           |
|          | W3-31    | 0-0.5       | 6/8/2016     | W3-31-SED-0-0.5 | 16-06-0657           | ł            | 13000        | <1.09    | 14.6        | 296   | 0.319J    |                  | 141               | 18.8            | 359    | 48600             | 569         | 0.434   | 5.04       | 386             | <1.09             | 0.345J          |          | 54       | 1470          |              | <140                        | +               |                        | 520          | 530                |                             |                         | 1390          |
| Notes:   | W3-58    | 0-0.5       | 3/8/2017     | W3-58-SED-0-0.5 | 17-03-0770           | 67           | 20800        | <2.23    | 9.23        | 80.4  | 0.573J    | 1.65             | 92.1              | 19.1            | 68.2   | 37500B            | 46.2        | 0.486   | 0.764      | 102             | 2.35              | 0.593J          | <2.23    | 64.4     | 232           | <30          | <30                         | <30             | <30                    | 100          | 89                 | 50                          | <30                     | 240           |

Notes

Sample depths are shown in feet below sediment suface

- -- = insufficient data points for statistical calculations
- < = analyte not detected above laboratory reporting limit

B = analyte was present in an associated method blank

Detected concentrations are **bold** 

Bold colored concentrations are in exceedance of their corresponding screening level (shown at top)

J = estimated below laboratory reporting limit

mg/kg = milligrams per kilogram

n/a = not applicable

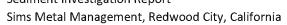
PCB = polychlorinated biphenyls

SDG = sample delivery group

Total PCBs summations from Aroclors were calculated using 0 for non-detects

μg/kg = micrograms per kilogram

UCL = upper confidence limit


UTL = upper tolerance limit

95% UCL = 95-percent upper confidence limit on the mean

95% UTL = 95-percent upper tolerance limit on the mean

## Table 6b

Sediment Sample Analytical Results - Project Area, Subtidal Locations Sediment Investigation Report





| al Manag | emen   | it, Rec | dwood C        | ity, Califo          | ornia                                                          |          |                 |                   |              |                  |                 |                 |                   |              |                  |                       |              |                   |                          |             |                      |                  |                |              |                   |                      |      |               |              |              |              |              |               |
|----------|--------|---------|----------------|----------------------|----------------------------------------------------------------|----------|-----------------|-------------------|--------------|------------------|-----------------|-----------------|-------------------|--------------|------------------|-----------------------|--------------|-------------------|--------------------------|-------------|----------------------|------------------|----------------|--------------|-------------------|----------------------|------|---------------|--------------|--------------|--------------|--------------|---------------|
|          |        |         |                |                      |                                                                |          |                 | T                 | 1            |                  |                 | T               | T                 | т            |                  | Meta                  | ls           | I                 | 1                        | 1           |                      |                  |                | 1            |                   |                      |      |               | PC           | Bs           | T            |              |               |
|          |        |         |                |                      |                                                                | Moisture | Aluminum        | Antimony          | Arseníc      | Barium           | Beryllium       | Cadmium         | Chromium (III+VI) | Cobalt       | Copper           | Iron                  | Lead         | Mercury           | Molybdenum               | Nickel      | Selenium             | Silver           | Thallium       | Vanadium     | Zinc              | Aroclor 1016         |      |               | Aroclor 1248 | Aroclor 1254 | Aroclor 1260 | Aroclor 1262 | Total PCBs    |
|          |        |         |                |                      | Screening Levels                                               | s %      | mg/kg           | mg/kg             | mg/kg        | mg/kg            | mg/kg           | mg/kg           | mg/kg             | mg/kg        | mg/kg            | mg/kg                 | mg/kg        | mg/kg             | mg/kg                    | mg/kg       | mg/kg                | mg/kg            | mg/kg          | mg/kg        | mg/kg             | μg/kg μg/            |      |               | g µg/k       | kg μg/kg     | μg/kg        | μg/kg        | μg/kg         |
|          |        |         |                |                      | 95% UCL Subtidal Background                                    |          | 29122           |                   | 9.63         | 66.19            | 0.693           | 0.926           | 105.7             |              | 61.3             | 42506                 | 35.39        | 3.077             | 2.689                    | 110.7       |                      | 0.501            |                | 75.27        | 156.5             |                      |      |               |              |              | <u> </u>     |              | 157.1         |
|          |        |         | Sample         | Sample               | 95% UTL Subtidal Background                                    | i n/a    | 37789           |                   | 13,37        | 84.69            | 0.852           | 2,79            | 157               | 21.3         | 90.98            | 48900                 | 51.58        | 4.956             | 5.01                     | 178         |                      | 0.806            |                | 90.11        | 200.1             |                      | -    |               |              |              |              |              | 335           |
| Sample T | ype Lo | cation  | Depth (ft)     | Date                 | Field ID SDG                                                   |          |                 |                   |              |                  |                 |                 |                   |              |                  |                       |              |                   |                          |             |                      |                  |                |              |                   |                      |      |               |              |              |              |              |               |
|          | W3-    | -01     | 0-0.5          | 6/6/2016             | W3-1-SED-23.2-23.8 16-06-0655                                  | 66       | 23000B          | 0.705B,J          | 12.1         | 89.4             | 0.697J          | <1.45           | 89.7              | 19.1         | 66.6             | 42800                 | 41.7         | 0.34              | <0.727                   | 103         | <2.18                | 0.796            | <2.18          | 72.3         | 208               | <29 <2               | 9 <2 | 9 <29         |              |              | 45           | <29          | 123           |
|          |        |         | 0-0.5          | 6/6/2016             | W3-2-SED-8.3-8.9 16-06-0655                                    | 66       | 24400B          | <2.19             | 17.5         | 23.7             | 0.71J           | <1.46           | 101               | 20           | 1.06             | 48600                 | 80.8         | 0.752             | <0.729                   | 114         | <2.19                | 1.28             | <2.19          | 75.4         | 425               | <30 <3               |      |               |              |              | 110          | <30          | 329           |
|          | W3-    |         | 1.5-2<br>2.5-3 | 3/7/2017<br>3/7/2017 | W3-2-SED-1.5-2.0 17-03-0683<br>W3-2-SED-2.5-3.0 17-03-0683     | 58<br>56 | 27200<br>32000  | 1.43J<br>1.51J    | 11.2<br>12.3 | 323<br><b>71</b> | 0.636<br>0.723  | 1.67            | 105<br>115        | 18.4<br>20.6 | 75.7             | 41100<br>45900        | 137<br>67.9  | 1.06<br>0.863     | 1.53<br><0.562           | 106<br>108  | 1.63J<br>0.929J      | 0.727<br>1.38    | <1.7<br><1.69  | 79.5<br>88.7 | 321<br>203        | <23 <2<br><23 <2     |      |               |              |              | 150<br>48    | <23<br><23   | 550<br>130    |
|          | ""     |         | 3.5-4          |                      | W3-2-SED-3.5-4.0 17-03-0683                                    | 57       | 35900           | <1.69             | 16.4         | 36               | 0.818           | 2.37            | 132               | 22.7         | 87.5             | 52000                 | 77.2         | 0.744             | 0.589                    | 125         | <1.69                | 1.5              | <1.69          | 99.1         | 317               | <23 <2               |      |               |              |              | 51           | <23          | 220           |
|          |        |         | 4.5-5          | 3/7/2017             | W3-2-SED-4.5-5.0 17-03-0683                                    | 53       | 32100           | 0.333J            | 11.4         | 36.4             | 0.745           | 1.55            | 118               | 20.7         | 59               | 44800                 | 1.77         | 1.22              | <0.505                   | 120         | 0.845J               | 0.725            | <1.51          | 89.2         | 221               | <21 <2               |      |               |              |              | 29           | <21          | 83            |
|          | W3-    |         | 0-0.5          | 1                    | W3-3-SED-21.2-21.8 16-06-0655                                  | 67       | 22800B          | 1.62B,J           | 12.7         | 55.2             | 0.682J          | <1.46           | 89.7              | 18.3         | 65.5             | 43600                 | 41.5         | 0.389             | <0.730                   | 98.7        | <2.19                | 0.752            | <2.19          | 71.9         | 202               | <31 <3               |      | _             |              |              | 41           | <31          | 119           |
|          |        |         | 0-0.5<br>1.5-2 | <del></del>          | W3-4-SED-8.8-9.4 16-06-0655<br>W3-4-SED-1.5-2.0 17-03-0683     | 70<br>55 | 24000B<br>33000 | 4.98B<br>0.798J   | 17.9         | 3.07             | 0.703J<br>0.733 | <1.74<br>5.11   | 93.5<br>146       | 18.9<br>28.4 | <b>76</b><br>245 | <b>45600</b><br>55100 | <b>47.5</b>  | 0.482<br>3.15     | <0.868<br><b>0.761</b>   | 104<br>178  | <2.60<br>1.21J       | 1.01             | <2.60<br><1.63 | 74.8<br>87   | 247<br>787        | <34 <3<br><110 <1    |      |               |              |              | 39<br>230    | <34<br><110  | 135<br>1500   |
|          | W3-    |         | 2.5-3          | <del></del>          | W3-4-SED-2.5-3.0 17-03-0683                                    | 57       | 34400           | 3.01              | 16.4         | 75.6             | 0.819           | 3.62            | 136               | 23.8         | 1.2.2            | 51300                 | 74.8         | 1.54              | <0.562                   | 136         | 1.21J                | 2.11             | <1.69          | 101          | 349               | <23 <2               |      |               |              |              | 59           | <23          | 260           |
|          |        |         | 3.5-4          |                      | W3-4-SED-3.5-4.0 17-03-0683                                    | 56       | 28800           | 1.05J             | 10.9         | 70.7             | 0.643           | 2.46            | 108               | 19.1         | 76               | 40500                 | 77.8         | 1.49              | 0.307J                   | 107         | <1.67                | 1.19             | <1.67          | 81.3         | 403               | <22 <2               | 2 <2 | 2 <22         | 120          | 76           | 50           | <22          | 250           |
|          |        |         | 4.5-5          | <u> </u>             | W3-4-SED-4.5-5.0 17-03-0683                                    | 56       | 27400           | 0.551J            | 12.7         | 71.5             | 0.712           | 1.97            | 112               | 20.2         | 79.5             | 42600                 | 74.5         | 0.58              | <0.556                   | 109         | 1.35J                | 1.49             | <1.67          | 85.4         | 227               | <22 <2               |      |               |              |              | 79           | <22          | 250           |
|          |        | -       | 0-0.5<br>1.5-2 |                      | W3-5-SED-15.0-15.5 16-06-0655<br>W3-5-SED-1.5-2.0 17-03-1483   | 67<br>55 | 26400B<br>23900 | 2.14B,J<br>7.41B  | 20.9         | 86.9<br>235      | 0.763<br>0.709  | 0.516J<br>6.23  | 203               | 22.2<br>85.8 | 458<br>688       | 62800<br>80400        | 236<br>250   | 0.4<br>0.611      | 0.989<br>6.65            | 138<br>286  | <2.16<br><1.71       | 1.45             | <2.16<br><1.71 | 83.1<br>86.7 | 768<br>1.620      | <30 <3<br><220 <2    | _    | $\rightarrow$ |              |              |              | <30<br><220  | <b>381</b>    |
|          | W3-    | -05     | 2.5-3          | <del></del>          | W3-5-SED-2.5-3.0 17-03-1483                                    | 54       | 23900           | <0.725            | 14.9         | 70.4             | 0.698           | 1.26            | 94.8              | <del></del>  | 71.5             | 40700                 | 47.8         | 0.4               | 0.64                     | 94.6        | <1.68                | 0.259J           | <1.68          | 77.1         | 215               | <22 <2               |      |               |              |              | 36           | <22          | 230           |
|          |        |         | 3.5-4          | <b></b>              | W3-5-SED-3.5-4.0 17-03-1483                                    | 55       | 26100           | 2.71B             | 13.6         | 70.7             | 0.712           | 1.32            | 99.9              | 19.2         | 59.5             | 41500                 | 40.3         | 0.547             | <0.554                   | 100         | <1.66                | <0.554           | <1.66          | 79           | 165               | <22 <2               |      |               |              |              | <22          | <22          | <22           |
|          |        |         | 4.5-5          | <del></del>          | W3-5-SED-4.5-5.0 17-03-1483                                    | 50       | 24500           | <0.721            | 10           | 59.2             | 0.669           | 0.616J          | 92.2              | 17.7         | 42.3             | 40700B                | 19.6         | 0.149J            | 0.698                    | 91.5        | <1.5                 | <0.5             | <1.5           | 72.5         | 106               | <20 <2               |      |               |              |              | <20          | <20          | <20           |
|          |        |         | 0-0.5          | +                    | W3-6-SED-6.7-7.3 16-06-0655                                    | 70       | 25100B          | 2.48B             | 13.6         | 65               | 0.747J          | <1.65           | 98.5              | 19.6         | 93.3             | 47500                 | 49.4         | 0.347             | <0.824                   | 109         | 1.31J                | 0.782J           | <2.47          | 79           | 273               | <33 <3               |      |               |              |              | 48           | <33          | 154           |
|          | W3-    |         | 1.5-2<br>2.5-3 |                      | W3-6-SED-1.5-2.0 17-03-0683<br>W3-6-SED-2.5-3.0 17-03-0683     | 53       | 21100<br>27100  | <b>8.41</b> <1.56 | 22.4<br>12.5 | 604<br>90.7      | 0.579<br>0.65   | 29.9<br>3.4     | 286<br>123        | 40.4<br>20.3 | 2350<br>349      | 149000<br>46900       | 1040         | 1.16<br>1.41      | 19.6<br>0.913            | 356<br>306  | <b>9.07</b> <1.56    | 47.8<br>2.38     | <1.59<br><1.56 | 64.1<br>81.7 | 4240<br>395       | <430 <4<br><21 <2    | _    | _             |              |              | 4900<br>180  | <430<br><21  | 1,2000<br>480 |
|          |        |         | 3.5-4          | <del></del>          | W3-6-SED-3.5-4.0 17-03-0683                                    | 56       | 30100           | <1.62             | 12.3         | 70.1             | 0.706           | 1.66            | 111               |              | 87.5             | 45100                 | 57           | 2.44              | <0.541                   | 110         | <1.62                | 0.668            | <1.62          | 87.2         | 242               | <23 <2               |      |               |              |              | 48           | <23          | 220           |
|          |        |         | 4.5-5          |                      | W3-6-SED-4.5-5.0 17-03-0683                                    | 54       | 30900           | 3.52              | 14.1         | 80.1             | 0.754           | 1.65            | 115               | 21           | 75.4             | 45500                 | 58.4         | 0.584             | <0.521                   | 115         | 1.04J                | 0.868            | <1.56          | 90           | 200               | <22 <2               | 2 <2 |               |              | 170          | 170          | <22          | 470           |
|          |        |         | 0-0.5          |                      | W3-7-SED-0-0.5 16-06-0656                                      | 52       | 18900B          | 9.64              | 47.6         | 203              | 0.487J          | 5               | 780               | 38.7         | 2280             | 85500                 | 312          | 1.02              | 19.38                    | 931         | <1.63                | 1.16             | <1.63          | 73.9         | 9340              | <210 <2              |      |               |              |              | 360          | <210         | 2510          |
|          | W3-    | 1       | 1.5-2<br>2-2.1 | +                    | W3-7-SED-1.5-2 16-06-0656<br>W3-7-SED-2.0-2.1 16-06-0656       | 63<br>59 | 12500B          | 93.1              | 68.9<br>76   | 1290             | <1.34<br><1.15  | 103<br>34.2     | 264<br>205        | 25.6<br>32   | 9280<br>623      | 157000<br>164000      | 3080<br>1690 | 1.58<br>1.95      | 25.28<br>20.98           | 959<br>404  | <4.02<br><3.46       | 2.45             | <4.02<br><3.46 | 59.2<br>70.9 | 6560<br>4270      | <270 <2°<br><240 <2° |      |               |              |              |              | <270<br><240 | 6820<br>6200  |
| 7        | 1003   | 1       | 3.5-4          |                      | W3-7-SED-3.5-4.0 17-03-1483                                    | 56       | 12800B<br>20900 | 2.85B             | 15.5         | 909              | 0.561J          | 4,47            | 158               | 27.8         | 206              | 91600                 | 189          | 0.928             | 5.63                     | 163         | <1.71                | 4,14             | <1.71          | 67.3         | 629               | <110 <1              | _    | _             |              | _            |              | <110         | 1900          |
| Subtidal |        | ,       | 4.5-5          | <del></del>          | W3-7-SED-4.5-5.0 17-03-1483                                    | 57       | 24800           | <1.78             | 13           | 78               | 0.676           | 5.3             | 126               | 20.4         | 146              | 42200                 | 100          | 2.71              | 3.03                     | 120         | <1.78                | 5.19             | <1.78          | 75.7         | 375               | <46 <4               |      |               |              |              | 170          | <46          | 400           |
| Sut      |        | ,       | 0-0.5          | 6/7/2016             | W3-8-SED-0-0.5 16-06-0656                                      | 60       | 25100B          | <1.83             | 31.4         | 195              | 0.662           | 2.93            | 128               | 25,8         | 360              | 67800                 | 23.7         | 1.37              | 3.65B                    | 352         | <1.83                | 0.894            | <1.83          | 82.2         | 1940              | <120 <13             |      |               |              |              | 380          | <120         | 2010          |
|          | 1412   |         | 1.5-2          | +                    | W3-8-SED-1.5-2 16-06-0656                                      | 58       | 21500B          | <1.79             | 42.2         | 247              | 0.602           | 9.75            | 170               | 29           | 534              | 79200                 | 484          | 1.15              | 7.058                    | 237         | <1.79                | 0.773            | <1.79          | 78.1         | 5680              | <240 <24             |      |               |              |              | 390          | <240         | 3060          |
|          | W3-    |         | 2.5-3<br>3.5-4 | <del></del>          | W3-8-SED-2.5-3 16-06-0656<br>W3-8-SED-3.5-4.0 17-03-0550       | 53       | 18700B<br>27800 | <1.63<br><1.73    | 23.3         | 190<br>348       | 0.538J<br>0.612 | 5.63<br>6.99    | 147               | 25.6<br>33.7 | 349<br>243       | 57200<br>51600        | 424<br>349   | 1.69<br>3.77      | 2.82B<br>3.55            | 292<br>349  | <1.63<br><b>2.51</b> | 1.59<br>2.4      | <1.63<br><1.73 | 68.8<br>78.5 | 1270<br>677       | <21 <2<br><110 <1    |      |               |              |              | 140<br>630   | <21<br><110  | 490<br>1600   |
|          |        |         | 4.5-5          |                      | W3-8-SED-4.5-5.0 17-03-0550                                    | 53       | 32100           | <1.61             | 11.2         | 84               | 0.691           | 2.89            | 133               | 20.8         | 99.4             | 44100                 | 76.8         | 3.15              | 0.315J                   | 142         | <1.61                | 2.11             | <1.73          | 81.5         | 271               | <21 <2               |      | _             |              |              | 90           | <21          | 270           |
|          |        |         | 0-0.5          | 4                    | W3-9-SED-0-0.5 16-06-0656                                      | 54       | 22100B          | <1.70             | 19.9         | 3.47             | 0.622           | 2.29            | 126               | 23.8         | 416              | 52700                 | 277          | 1.4               | 1.68B                    | 161         | <1.70                | 0.402J           | <1.70          | 75.2         | 1060              | <22 <2               |      |               |              |              | 190          | <22          | 369           |
|          |        |         | 1.5-2          | 6/7/2016             | W3-9-SED-1.5-2 16-06-0656                                      | 52       | 19200B          | <1.58             | 14.9         | 83.7             | 0.596           | 1.65            | 116               | 19.9         | 146              | 38100                 | 184          | 2.69              | 0.444B,J                 | 159         | <1.58                | 1.76             | <1.58          | 64.8         | 248               | <21 <2               |      |               |              |              | 39           | <21          | 141           |
|          | W3-    |         | 2.5-3<br>3.5-4 | 6/7/2016<br>3/7/2017 | W3-9-SED-2.5-3 16-06-0656<br>W3-9-SED-3.5-4.0 17-03-0683       | 54       | 23000B<br>30100 | <1.68<br><1.52    | 14.4         | 62.7<br>60.3     | 0.648<br>0.684  | 1.49            | 120<br>106        | 22.5         | 80.5<br>52.6     | 41500<br>44400        | 70.6<br>22.3 | 3.64<br>0.207     | <0.561<br><0.508         | 164<br>106  | <1.68<br><1.52       | 1.58<br><0.508   | <1.68<br><1.52 | 73.7<br>82.3 | 248<br><b>147</b> | <22 <2<br><21 <2     |      |               |              |              | 71<br>18J    | <22          | 181<br>130    |
|          |        | ι       | 4.5-5          | <del></del>          | W3-9-SED-4.5-5.0 17-03-0683                                    | 51       | 27000           | 1.17J             | 7.4          | 53.4             | 0.684           | 0.782J          | 95.1              | 18.6         | 38.5             | 41100                 | 16.3         | 0.207<br>0.149J   | <0.508                   | 95.1        | <1.52                | <0.508           | <1.52          | 73.7         | 113               | <21 <2               |      |               |              |              | <20          | <21<br><20   | 37            |
|          | W3-    |         | 0-0.5          |                      | W3-32-SED-27-27.5 16-06-0657                                   | 56       | 26200           | 0.382J            | 10.4         | 92               | 0.748           | 0.804J          |                   |              | 73.8             | 41900                 | 96.9         | 0.375             | <0.569                   | 103         | <1.71                | 0.288J           | 0.576J         | 74.8         | 459               | <23 <2               |      |               |              |              |              |              | 116           |
|          |        | -33     | 0-0.5          | 6/9/2016             | W3-33-SED-19.0-19.5 16-06-0863                                 | 58       | 27400           | <1.89             | +            |                  | 0.736           | 0.504J          | 97.9              | 19.2         | 68.2             | 43500                 | 36.8         | 0.353             | <0.629                   | 99.3        | <1.89                | 0.262J           | <1.89          | 74           | 191               | <24 <2               | 4 <2 | 4 <24         | 39           | 35           | 28           | <24          |               |
|          |        |         | 0-0.5          | +                    | W3-34-SED-21.5-22.0 16-06-0863                                 | 55       | 22000           | <1.74             | 6.78         | 91.5             | 0.681           | 0.593J          | +                 |              | 534              | 36800                 | 41.2         | <0.181            | 0.414J                   | 88.5        | <1.74                | 0.23J            | 0.512B,J       | 63.2         | 228               | <22 <2               |      |               |              | 140          | +            |              |               |
|          | W3-    |         | 0-0.5<br>0-0.5 |                      | W3-35-SED-11.4-11.9 16-06-0863<br>W3-36-SED-9.4-9.9 16-06-0863 | 53       | 25700<br>24800  | <2.03<br><1.61    | 9.02         | 61.7<br>36       | 0.696<br>0.713  | 0.58J<br>0.974J |                   | 17.9         | 56.7<br>80.7     | 40900<br>42100        | 34.7<br>53.4 | 0.374<br>0.531    | <0.677<br>5.05           | 93.3<br>142 | <2.03<br><1.61       | 0.417J<br>0.363J | <2.03<br><1.61 | 68.9<br>72.5 | 163<br>266        | <26 <2<br><21 <2     |      |               |              | 25J          |              |              |               |
|          | W3-    |         | 0-0.5          | <del></del>          | W3-37-SED-8.3-8.8 16-06-0863                                   | 60       | 26100           | <1.89             |              | 73.5             |                 | 0.692J          |                   |              | 76.2             | 44300                 | 44.4         |                   | <0.63                    | 112         |                      | 0.355J           | <1.89          | 74.4         | 243               | <24 <2               |      |               |              |              |              | <24          |               |
|          |        |         | 0-0.5          |                      | W3-38-SED-5.4-5.9 16-06-0863                                   | 61       | 24000           | <1.93             | 6.89         |                  | 0.676           | 0.872J          | +                 | +            | 68.5             | 39600                 | 52.2         | 0.855             | <0.644                   | 118         | -                    | 0.262J           | <1.93          | 69.1         | 243               | <25 <2               |      |               |              |              | +            | <25          |               |
|          |        | ŀ       | 1.5-2          |                      | W3-38-SED-1.5-2.0 17-03-0550                                   | 54       | 27600           | 0.426J            |              | 64.8             |                 | 1.05J           |                   | 18.3         | 50.8             | 40600                 | 312          | 0.284             | 0.416J                   | +           | 0.753J               | 0.322J           | <1.59          | 73.1         | 169               | <22 <2               |      |               |              |              |              |              |               |
|          | W3-    | +       | 2.5-3          | <del> </del>         | W3-38-SED-2.5-3.0 17-03-0550                                   | 52       | 27800           | 51.1              | <del></del>  | 66.7             |                 | 1.63            | <del></del>       | +            | 45.3             | 39900                 | 58.3         | 0.175J            | 0.417J                   | +           | 2.14                 | <0.531           | <1.59          | 75.7         | 57/4              | <21 <2               |      |               |              | 36           |              |              |               |
|          |        | 1       | 3.5-4<br>4.5-5 |                      | W3-38-SED-3.5-4.0 17-03-0550<br>W3-38-SED-4.5-5.0 17-03-0550   | 50<br>49 | 29700<br>26600  | <1.52<br><1.42    | 8.49<br>6.59 | <b></b>          |                 | 0.95J<br>0.792J |                   | 18.4<br>17.6 | 83.6<br>37.7     | 40300<br>38700        | 27.6         | 0.29<br>0.127J    | <0.508<br><b>0.342</b> J | +           | 0.821J<br>1.34J      | <0.508<br><0.473 | <1.52<br><1.42 | 74.9<br>69.8 | 104<br>159        | <20 <2<br><20 <2     |      |               |              | 20           |              |              |               |
|          | -      |         | 0-0.5          | <del></del>          | W3-39-SED-5.0-5.5 16-06-0863                                   | 63       | 25900           | <2.04             |              |                  | 0.759           | 0.7923          |                   | 18.9         | 67.8             | 42900                 | 40.4         | 0.1273<br>0.0613J | <0.681                   | 107         | <2.04                | 0.455J           | <2.04          | 74.8         | 200               | <27 <2               |      |               |              |              |              |              |               |
|          |        | 1       | 1.5-2          |                      | W3-39-SED-1.5-2.0 17-03-0550                                   | 56       | 31800           | <1.66             | 12.3         | 97.3             | 0.689           | 1.97            |                   | 20           | 72.7             | 43900                 | 78.4         | 0.786             | <0.553                   | 116         | <1.66                | 0.86             | <1.66          | 86.3         | 253               | <23 <2               | _    |               |              |              |              |              | 460           |
|          | W3-    | 1       | 2.5-3          | <del> </del>         | W3-39-SED-2.5-3.0 17-03-0550                                   | 56       | 30400           | <1.67             | 13.7         | 72.2             |                 | 1.34            | 105               |              | 71.8             | 41500                 | 55.2         | 0.589             | <0.558                   | 105         | <1.67                | 0.854            | <1.67          | 81.9         | 188               | <23 <2               |      |               |              | 54           |              |              |               |
|          |        |         | 3.5-4          | <del></del>          | W3-39-SED-3.5-4.0 17-03-0550                                   | 52       | 26900           | <1.53             | 9.09         | 56.5             | 0.586           | 1.07            |                   | 16.7         | 47.1             | 38700                 | 74.3         | 0.537             | 0.407J                   | 89.6        | <1.53                | <0.51            | <1.53          | 72.1         | 122               | <21 <2               |      |               |              | 24           |              |              | 130           |
| L        | L      | l       | 4.5-5          | 3/6/2017             | W3-39-SED-4.5-5.0   17-03-0550                                 | 53       | 29200           | 0.635J            | 12.3         | 62.9             | 0.619           | 1.07            | 97.7              | 17.7         | 89.9             | 40300                 | 60.5         | 0.381             | 0.383J                   | 94.8        | 1.27J                | 0.189J           | <1.6           | 77.4         | 160               | <21 <2               | 1 <2 | 1   <2:       | 19           | 25           | 33           | <21          | 77            |

## Table 6b

Sediment Sample Analytical Results - Project Area, Subtidal Locations Sediment Investigation Report

Sims Metal Management, Redwood City, California



| ai ivianagei | nent, F | Redwood           | City, Califo           | ornia                                                          |          |                |                |              |               |                 |                |                   |              |              |                   |              |                |                        |             |                    |                  |                |              |                    |                              |              |                |                   |                   |              |                            |
|--------------|---------|-------------------|------------------------|----------------------------------------------------------------|----------|----------------|----------------|--------------|---------------|-----------------|----------------|-------------------|--------------|--------------|-------------------|--------------|----------------|------------------------|-------------|--------------------|------------------|----------------|--------------|--------------------|------------------------------|--------------|----------------|-------------------|-------------------|--------------|----------------------------|
|              |         |                   |                        |                                                                |          |                | 7              |              |               |                 |                |                   |              |              | Meta              | ls           |                |                        | - <b>T</b>  |                    | ·····            |                |              |                    |                              |              |                | PCBs              |                   |              |                            |
|              |         |                   |                        |                                                                | Moisture | Aluminum       | Antimony       | Arsenic      | Barium        | Beryllium       | Cadmium        | Chromium (III+VI) | Cobalt       | Copper       | Iron              | Lead         | Mercury        | Molybdenum             | Nickel      | Selenium           | Silver           | Thallium       | Vanadium     | Zinc               | Aroclor 1016<br>Aroclor 1221 | Aroclor 1232 | Arocior 1242   | Aroclor 1248      | Arocior 1254      | Arocior 1260 | Aroclor 1262<br>Total PCBs |
|              |         |                   |                        | Screening Levels                                               |          | mg/kg          | mg/kg          | mg/kg        |               | mg/kg           | mg/kg          | mg/kg             |              | mg/kg        | mg/kg             | mg/kg        | mg/kg          | mg/kg                  | mg/kg       | mg/kg              | mg/kg            | mg/kg          | mg/kg        | mg/kg              | μg/kg μg/k                   | g μg/kg      | μg/kg          | μg/kg             | μg/kg             | μg/kg μ      | ıg/kg μg/k                 |
|              |         |                   |                        | 95% UCL Subtidal Background                                    |          | 29122          | -              | 9.63         | <del> </del>  | 0.693           | 0.926          | 105.7             | 17.23        | 61.3         | 42506             | 35.39        | 3.077          | 2.689                  | 110.7       |                    | 0.501            |                | 75.27        | 156.5              |                              |              |                | -                 |                   |              | 157.:                      |
|              |         |                   |                        | 95% UTL Subtidal Background                                    | n/a      | 37789          |                | 13.37        | 84.69         | 0.852           | 2,79           | 157               | 21.3         | 90.98        | 48900             | 51.68        | 4.956          | 5.01                   | 178         |                    | 0.806            |                | 90.11        | 200.1              |                              |              |                |                   |                   |              | - 395                      |
| Commis True  | Locatio | on Sample         |                        | Field ID SDG                                                   |          |                |                |              |               |                 |                |                   |              |              |                   |              |                |                        |             |                    |                  |                |              |                    |                              |              |                |                   |                   |              |                            |
| Sample Typ   | *       | Depth (f<br>0-0.5 | 6/9/2016               | W3-40-SED-4.7-5.2 16-06-0863                                   | 62       | 25400          | <1.96          | 7.93         | 81            | 0.707           | 0.823J         | 106               | 18.8         | 77.8         | 42500             | 154          | 0.616          | <0.653                 | 110         | <1.96              | 0.258J           | <1.96          | 70.6         | 250                | <26 <26                      | <26          | <26            | 240               | 100               | 52           | <26 <b>392</b>             |
|              |         | 1.5-2             | 3/8/2017               | W3-40-SED-1.5-2.0 17-03-0770                                   | 58       | 22800          | <1.72          | 1.3.4        |               | 0.604           | 2.82           | 111               | 20.6         | 167          | 41400B            | 132          | 0.901          | 1.12                   | 112         | 2.74               | 1.22             | <1.72          | 73.4         | 413                | <24 <24                      | <24          | <24            | 170               | 200               |              | <24 530                    |
|              | W3-40   | 2.5-3             | 3/8/2017               | W3-40-SED-2.5-3.0 17-03-0770                                   | 56       | 22900          | <1.63          | 10.3         | ļ             | 0.576           | 1.74           | 90                | 18.5         | 49.9         | 39100B            | 33.5         | 0.318          | 0.765                  | 92.3        | 4.66               | 0.218J           | <1.63          | 69.4         | 140                | <22 <22                      |              | <22            | 82                | 77                |              | <22 220                    |
|              |         | 3.5-4             | 3/8/2017               | W3-40-SED-3.5-4.0 17-03-0770                                   | 52       | 22900          | <1.6           | 8.04         | 59.2          | 0.574           | 1.38           | 86.2              | 18           | 41.3         | 37700B            | 32.2         | 0.149J         | 0.417J                 | 88.5        | 5                  | <0.533           | <1.6           | 68.3         | 137                | <21 <21                      | <21          | <21            | 19J               | 16J               | 41           | <21 76                     |
|              |         | 4.5-5             | 3/8/2017               | W3-40-SED-4.5-5.0 17-03-0770                                   | 50       | 20800          | <1.45          | 7            | 65.2          | 0.53            | 1.27           | 78.5              | 16.9         | 34.4         | 36100B            | 91.1         | 0.0972J        | <0.483                 | 81.4        | 4.01               | <0.483           | <1.45          | 62.8         | 120                | <20 <20                      |              | <20            | <20               | <20               |              | <20 <20                    |
| 1            |         | 0-0.5             | 6/9/2016               | W3-41-SED-9.2-9.7 16-06-0863                                   | 61       | 21200B         | <1.98          | 15.8         | <del></del>   | 0.581J          | 5.49           | 149               | 23.4         | 458          | 804008            | 2240         | 0.434          | 3.99                   | 160         | <1.98              | 3.8              | <1.98          | 71.3         | 17008              | <26 <26                      | <26          | <26            | 450               |                   |              | <26 990                    |
|              | 14/2 44 | 1.5-2             |                        | W3-41-SED-1.5-2.0 17-03-1005                                   | 53       | 22600          | <1.58          | 17.7         | -             | 0.451J          | 9.84           | 268               | 33.8         | 1870         | 1160008           | 1220         | 0.834          | 35.4                   | 268         | 5.27               | 1.29             | <1.58          | 75.4         | 31108              | <210 <210                    |              |                | <210              | 2000              |              | <210 5900                  |
|              | W3-41   | 2.5-3<br>3.5-4    |                        | W3-41-SED-2.5-3.0 17-03-1005<br>W3-41-SED-3.5-4.0 17-03-1005   | 52<br>55 | 24600          | <1.52          | 13.1         |               | 0.606           | 8.88<br>2.36   | 133<br>138        | 30.4         | 340<br>1340  | 602008<br>46100B  | 3.86         | 0.894<br>0.569 | 1. <b>97</b><br><0.541 | 207         | 2.08               | 1.33<br>0.764    | <1.52          | 76.6         | 12108<br>4168      | <100 <100<br><22 <22         |              | 550<br>260     | <100<br><22       | 460<br>120        |              | <100 1.300<br><22 420      |
|              |         | 4.5-5             |                        | W3-41-SED-4.5-5.0 17-03-1005                                   | 56       | 27700<br>28700 | <1.62<br><1.66 | 13.1         | ļ             | 0.675           | 1.98           | 109               | 20.7         | 85.5         | 44900B            | 321<br>58.8  | 0.551          | <0.541                 | 130<br>117  | 1.8<br><1.66       | 0.784            | <1.62<br><1.66 | 83.2<br>83.4 | 2798               | <23 <23                      |              | 240            | <23               | 110               |              | <22 420<br><23 400         |
|              | W3-42   | 0-0.5             | <del></del>            | W3-42-SED-17.2-17.7 16-06-0862                                 | 64       | 27100B         | <2.00          | 8.35         |               | 0.727           | 1.07J          | 104               | 18.2         | 1.13         | 44600B            | 54.2         | 0.309          | 0.884                  | 106         | <2.00              | <0.666           | <2.00          | 78.6         | 3348               | <28 <28                      |              | <28            | 140               | 76                |              | <28 281                    |
| 1            |         | 0-0.5             |                        | W3-43-SED-7.5-8.0 16-06-1303                                   | 64       | 33900          | <2.01          | 20.2         |               | 0.716           | 2.59           | 159               | 17.4         | 511          | 584008            | 114          | 0.443B         | 6.91                   | 118         | <2.01              | 0.309J           | <2.01          | 84.5B        | 780                | <28 <28                      |              | <28            | 260               |                   |              | <28 710                    |
|              | W3-43   | 1.5-2             | 3/10/2017              | W3-43-SED-1.5-2.0 17-03-1005                                   | 55       | 17000          | <1.67          | 3.5          |               | <0.557          | 29.4           | 648               | 38.7         | 3.2000       | 1.860008          | 702          | 3.6.6          | 56.7                   | 3520        | 10.9               | 3.65             | <1.67          | 60.6         | 101.008            | <220 <220                    | <220         |                | <220              | 910               | 320 <        | <220 3800                  |
|              |         | 0-0.5             | 6/13/2016              | W3-44-SED-9.4-9.9 16-06-1303                                   | 65       | 30000          | <2.14          | 1.7.3        | 117           | 0.626J          | 0.741J         | 95                | 12.6         | 1.1.7        | 42800B            | 89.8         | 0.549B         | 4.52                   | 96.3        | <2.14              | 0.37J            | <2.14          | 70.2B        | 390                | <28 <28                      | <28          | <28            | 210               | 130               | 120 -        | <28 460                    |
|              |         | 1.5-2             | 3/8/2017               | W3-44-SED-1.5-2.0 17-03-0770                                   | 55       | 19300          | <1.66          | 20.1         |               | 0.411J          | 21.4           | 199               | 28.8         | 789          | 807008            | 662          | 1.87           | 13.3                   | 432         | 8.85               | 1.92             | <1.66          | 71.2         | 3030               | <450 <450                    |              |                | 3600              |                   |              | <450 7508                  |
|              | W3-44   | 2.5-3             | 3/10/2017              | W3-44-SED-2.5-3.0 17-03-1005                                   | 52       | 18800          | 4.65           | 18.5         |               | 0.424J          | 25.3           | 193               | 51.3         | 1460         | 897008            | 685          | 2.13           | 8.46                   | 315         | 4.14               | 2.08             | <1.52          | 67.9         | 30208              | <420 <420                    |              |                | <420              |                   |              | <420 7200                  |
| 1            |         | 3.5-4             |                        | W3-44-SED-3.5-4.0 17-03-1005                                   | 53       | 27200          | <1.61          | 13.2         | l             | 0.605           | 4.61           | 136               | 21.7         | 119          | 44800B            | 112          | 4.41           | 0.384J                 | 148         | <1.61              | 2.71             | <1.61          | 77.1         | 4248               | <21 <21                      | <21          | 190            | <21               |                   |              | <21 580                    |
|              | W3-45   | 4.5-5<br>0-0.5    | 3/10/2017<br>6/13/2016 | W3-44-SED-4.5-5.0 17-03-1005<br>W3-45-SED-11.2-11.7 16-06-1303 | 52<br>64 | 27500<br>35200 | <1.54<br><2.13 | 12.7<br>35.2 | <del> </del>  | 0.633           | 3.28<br>0.531J | 128<br>108        | 20.5<br>14.4 | 127<br>89.1  | 45100B<br>47900B  | 87.1<br>53.6 | 1.6<br>0.876B  | 0.562<br>4.48          | 145<br>107  | <b>1.31J</b> <2.13 | 1.81<br>0.439J   | <1.54<br><2.13 | 81<br>80.1B  | 3838<br>275        | <21 <21<br><28 <28           | <21<br><28   | <b>250</b> <28 | <21<br><b>69</b>  | 150<br>56         |              | <21 490<br><28 <b>173</b>  |
|              | W3-46   | 0-0.5             |                        | W3-46-SED-10.8-11.3 16-06-1303                                 | 56       | 22600          | <1.81          | 7.81         | $\overline{}$ | 0.598J          | 0.739J         | 87.7              | 17           | 73.2         | 38500             | 40.2         | 0.688          | <0.602                 | 96.3        | <1.81              | 0.433J           | <1.81          | 64           | 232                | <23 <23                      | _            | <23            | 60                | 53                |              | <23 149                    |
|              | 113 10  | 0-0.5             | 6/13/2016              | W3-47-SED-5.1-5.6 16-06-1303                                   | 67       | 37100          | <2.18          | 23.4         |               | 0.754           | <1.46          | 155               | 15.6         | 1710         | 648008            | 63.3         | 0.456B         | 13.7                   | 131         | <2.18              | <0.728           | <2.18          | 86.88        | 572                | <30 <30                      | <30          | <30            | 200               | 96                |              | <30 356                    |
|              |         | 1.5-2             |                        | W3-47-SED-1.5-2.0 17-03-1084                                   | 46       | 14300          | 5.19           | 18           |               | 0.335J          | 10.5           | 168               | 60.7         | 367          | 787008            | 533          | 1.63           | 9.98                   | 248         | <1.35              | 1.91             | <1.35          | 52.4         | 1530               | <180 <180                    |              |                | 550               | ·                 |              | <180 2000                  |
|              | W3-47   | 2.5-3             | 3/13/2017              | W3-47-SED-2.5-3.0 17-03-1084                                   | 56       | 24300          | 2.93           | 12.3         | 83.4          | 0.603           | 2.43           | 152               | 21.8         | 1.72         | 589008            | 91.6         | 0.112J         | 9.88                   | 138         | <1.66              | <0.553           | <1.66          | 75.1         | 403                | <22 <22                      | <22          | <22            | 85                | 150               | 150 -        | <22 <b>390</b>             |
| -            |         | 3.5-4             |                        | W3-47-SED-3.5-4.0 17-03-1084                                   | 50       | 23800          | 2.37           | 7.44         |               | 0.594           | 0.917J         | 89.3              | 17.9         | 37.6         | 40100B            | 15           | 0.0844J        | 0.289J                 | 100         | 0.923J             | <0.485           | <1.45          | 67.9         | 122                | <20 <20                      |              | <20            | <20               | <20               |              | <20 <20                    |
| Subtidal     |         | 4.5-5             |                        | W3-47-SED-4.5-5.0 17-03-1084                                   | 51       | 21400          | 0.731J         | 7.8          |               | 0.557           | 0.674J         | 79.7              | 16.6         | 32.9         | 36600B            | 12.1         | 0.0677J        | <0.51                  | 86.2        | <1.53              | <0.51            | <1.53          | 61.9         | 115                | <20 <20                      |              | <20            | <20               | <20               |              | <20 <20                    |
| ₫            |         | 0-0.5             |                        | W3-48-SED-2.5-3.0 16-06-0862                                   | 59       | 22500B         | <1.75          | 1.6.5        | ·             | 0.607           | 5.32           | 189               | 2.5          | 9120         | 780008            | 186          | 30.5           | 9.67                   | 1.82        | 2.17               | 0.779            | <1.75          | 77.4         | 21808              | <240 <240                    |              |                | 780               | 410               |              | <240 2050                  |
| ં છ          | W3-48   | 1.5-2<br>2.5-3    | 3/10/2017<br>3/10/2017 | W3-48-SED-1.5-2.0 17-03-1005<br>W3-48-SED-2.5-3.0 17-03-1005   | 51<br>48 | 19600<br>22000 | <1.53<br><1.47 | 22.4<br>11.4 | <b> </b>      | 0.37J<br>0.487J | 16.3<br>6.49   | 215<br>129        | 38.2         | 1130         | 1210008<br>635008 | 357<br>209   | 1.1<br>0.792   | 3.86                   | 264<br>141  | 10.5<br>1.9        | 6.93<br>0.475J   | <1.53<br><1.47 | 75.4<br>71.1 | 56608<br>11608     | <100 <100<br><96 <96         | <100<br><96  | 1400<br>1100   | <100<br><96       | 630<br>560        |              | <100 2200<br><96 1900      |
|              | 100     | 3.5-4             |                        | W3-48-SED-3.5-4.0 17-03-1005                                   | 52       | 24700          | <1.53          | 8.54         |               | 0.549           | 2.13           | 104               | 19.8         | 86.2         | 47600B            | 46.9         | 0.732          | 1.46                   | 108         | 1.13J              | <0.511           | <1.53          | 73.2         | 4608               | <21 <21                      |              | 270            | <21               | 130               |              | <21 440                    |
|              |         | 4.5-5             | 3/10/2017              | W3-48-SED-4.5-5.0 17-03-1005                                   | 51       | 27100          | <1.55          | 7.2          |               | 0.602           | 1.1            | 94.2              | 18.2         | 37.1         | 40900B            | 13.6         | 0.0825J        | <0.516                 | 95.8        | 1.12J              | <0.516           | <1.55          | 72.3         | 122B               | <20 <20                      | <20          | 83             | <20               | 20J               |              | <20 120                    |
|              |         | 0-0.5             | 6/10/2016              | W3-49-SED-2.5-3.0 16-06-0862                                   | 63       | 24900B         | <1.96          | 12.1         |               | 0.665           | 2.38           | 115               | 20.4         | 23.7         | 500008            | 3.03         | 0.484          | 1.32                   | 120         | <1.96              | 1.16             | <1.96          | 75.7         | 6588               | <27 <27                      | <27          | <27            | 250               |                   | 130          | <27 580                    |
|              |         | 1.5-2             |                        | W3-49-SED-1.5-2.0 17-03-1084                                   | 56       | 23800          | <1.63          | 14.1         | <del> </del>  | 0.656           | 2.24           | 104               | 19.8         | 91.2         | 42800B            | 83.1         | 1.62           | 0.494J                 | 111         | <1.63              | 1.43             | <1.63          | 80.2         | 299                | <23 <23                      | <23          | <23            | 170               |                   |              | <23 580                    |
|              | W3-49   | 2.5-3             |                        | W3-49-SED-2.5-3.0 17-03-1084                                   | 52       | 22600          | <1.52          | 16,4         | <del></del>   | 0.632           | 1.27           | 90.7              | 18           | 56.7         | 39300B            | 84.3         | 0.413          | <0.506                 | 94.1        | 0.788J             | 0.708            | <1.52          | 75.5         | 174                | <21 <21                      | <21          | <21            | 37                | 28                |              | <21 100                    |
|              |         | 3.5-4             |                        | W3-49-SED-3.5-4.0 17-03-1084                                   | 56       | 22500          | <1.71          | 34.3         |               | 0.637           | 1.29           | 88.5              | 19.1         | 59.9         | 39900B            | 43           | 0.379          | 0.441J                 | 97.4        | <1.71              | 0.348J           | <1.71          | 76.2         | 163                | <22 <22                      |              | <22            | <22               | <22               |              | <22 <23                    |
|              |         | 4.5-5<br>0-0.5    | 3/13/2017<br>6/13/2016 | W3-49-SED-4.5-5.0 17-03-1084<br>W3-50-SED-7.6-8.1 16-06-1303   | 56<br>58 | 24000<br>21500 | 1.06J<br><1.71 | 11.9<br>11.7 |               | 0.628           | 1.21           | 90.1<br>115       | 17.9<br>20   | <b>53.3</b>  | 38600B<br>44400   | 41.9<br>103  | 0.366<br>0.371 | <0.542<br>1.63         | 95.6<br>121 | <1.63<br><1.71     | 0.348J<br>0.476J | <1.63<br><1.71 | 73.2<br>66.6 | 1 <b>65</b><br>591 | <22 <22<br><24 <24           |              | <22<br><24     | <22<br><b>430</b> | <22<br><b>260</b> |              | <22 <23<br><24 800         |
|              |         | 1.5-2             |                        | W3-50-SED-1.5-2.0 17-03-0770                                   | 52       | 19900          | <1.71          | 6.02         | <del></del>   | 0.538           | 1.17           | 80                | 16.7         | 35.5         | 34900B            | 11.6         | 0.612          | 0.29J                  | 84          | 2.63               | <0.494           | <1.71          | 60.6         | 92.8               | <24 <24 <21                  | <del></del>  |                | 27                | 18J               |              | <24 808<br><21 <b>46</b>   |
|              | W3-50   | 2.5-3             |                        | W3-50-SED-2.5-3.0 17-03-0770                                   | 49       | 22800          | <1.49          | 7.47         | -             | 0.575           | 1.23           | 87.3              | 18.2         | 34.9         | 38000B            | 11.1         | 0.0657J        | <0.497                 | 89.3        | 3.65               | <0.497           | <1.49          | 67.7         | 91.5               | <20 <20                      |              | , ,            | <20               |                   |              | <20 <20                    |
|              |         | 3.5-4             |                        | W3-50-SED-3.5-4.0 17-03-0770                                   | 50       | 21700          | <1.45          | 7.24         |               | 0.57            | 1.16           | 84                | 17.4         | 33           | 36500B            | 12.1         | 0.0788J        | <0.483                 | 85.8        |                    | <0.483           | <1.45          | 64.8         | 88                 | <20 <20                      |              |                | <20               |                   |              | <20 <20                    |
|              |         | 4.5-5             | 3/8/2017               | W3-50-SED-4.5-5.0 17-03-0770                                   | 50       | 23400          | <1.43          | 20.3         | 45.3          | 0.602           | 1.4            | 96                | 26           | 51           | 41100B            | 11.5         | 0.0651J        | 0.488                  | 108         | 2.84               | <0.477           | <1.43          | 70.8         | 96.7               | <20 <20                      | <20          | <20            | 13J               | <20               | <20          | <20 <20                    |
|              | W3-51   | 0-0.5             |                        | W3-51-SED-13.0-13.5 16-06-1303                                 | 64       | 19800          | <2.14          | 7.18         |               | 0.611J          | 0.701J         |                   | 20.8         | 58.6         | 35200             | 33.9         | 0.379          | <0.714                 | 91.6        | <2.14              | <0.714           | <2.14          | 61.4         | 173                |                              | <27          |                |                   |                   |              | <27 <b>107</b>             |
|              |         | 0-0.5             |                        | W3-52-SED-8.0-8.5 16-06-1303                                   | 59       | 22900          | <1.87          | 8.93         |               | 0.642           | 0.734J         |                   | 17.3         | 68           | 37200             | 44.5         | 0.252          | <0.624                 | 97.2        | <1.87              | 0.269J           | <1.87          | 66           | 227                |                              | <24          |                | 61                |                   |              | <24 174                    |
|              | LW2 52  | 1.5-2             |                        | W3-52-SED-1.5-2.0 17-03-1483                                   | 55       | 26000          | 2.03B          | 12.8         | _             | 0.722           | 1.82           |                   | 19.9         | 70.7         | 39800             | 98           | 1.6            | <0.546                 | 142         | <1.64              | 1.21             | <1.64          | 79.5         | 197                | <22 <22                      |              |                |                   |                   |              | <22 140                    |
|              | W3-52   | 2.5-3             |                        | W3-52-SED-2.5-3.0 17-03-1483                                   | 57       | 27300          | 2.63B          | 12.9         | <del></del>   | 0.741           | 1.37           | 105               | 19.3         | 66.7         | 42200             | 58.5         | 0.55           | <0.615                 | 99.6        | <1.84              | 1.22             | <1.84          | 82.3         | 189                |                              | <23          | -              |                   |                   |              | <23 64                     |
|              |         | 3.5-4<br>4.5-5    |                        | W3-52-SED-3.5-4.0 17-03-1483<br>W3-52-SED-4.5-5.0 17-03-1483   | 55<br>55 | 26500<br>25400 | 2.33B<br>2.9B  | 12.1         | <del> </del>  | 0.707<br>0.738  | 1.28<br>1.07J  | 102<br>98 5       | 18.9<br>19.5 | 63.8<br>58.7 | 41600<br>41700    | 52.7<br>48.5 | 0.558<br>0.418 | <0.571<br><0.564       | 98.6        | <1.71<br><1.69     | 0.358J           | <1.71<br><1.69 | 79.6<br>81.2 | 173<br>159         | <22 <22<br><22 <22           | <22<br><22   |                |                   | <b>39</b> <22     |              | <22 <b>110</b> <22 <22     |
|              | W3-53   | 0-0.5             |                        | W3-53-SED-0-0.5 17-03-1483                                     | 70       | 23600          | 2.78B          | 8.54         |               | 0.685J          | 0.796J         | 93.4              | 18           | 61.4         | 39900             | 37           | 0.371          | <0.802                 | 94.8        | <2.41              | 0.507J           | <2.41          | 68           | 180                | <b></b>                      | <33          |                |                   |                   |              | <33 190                    |
|              | W3-54   | 0-0.5             |                        | W3-54-SED-0-0.5 17-03-1483                                     | 67       | 20700          | 3.18B          | 7.35         |               | 0.559J          | 0.676J         |                   | 15.5         | 54.5         | 34200             | 32.6         | 0.16J          | <0.798                 | 79.8        | <2.39              | <0.798           | <2.39          | 57.9         | 166                | <30 <30                      |              |                |                   | 58                |              | <30 <b>190</b>             |
|              | W3-55   | 0-0.5             |                        | W3-55-SED-0-0.5 17-03-0770                                     | 69       | 23700          | <2.33          |              | <del></del>   | 0.633J          | 1.55J          |                   | 17.7         | 55.2         | 38900B            | 54.4         | 0.334          | 0.605J                 |             | 2.62               | 0.437J           | <2.33          | 71.4         | 172                | <33 <33                      |              |                |                   |                   |              | <33 61                     |
|              | W3-56   | 0-0.5             |                        | W3-56-SED-0-0.5 17-03-0770                                     | 66       | 22800          | <2.11          | +            |               | 0.611J          | 1.76           |                   | 20.3         | 68.6         | 40400B            | 62.8         | 0.421          | <0.703                 |             | 1.98J              | 0.553J           | <2.11          | 69.5         | 216                | <29 <29                      | <29          | <29            | 60                | 88                | 64 -         |                            |
|              | W3-57   | 0-0.5             | 3/8/2017               | W3-57-SED-0-0.5 17-03-0770                                     | 69       | 24500          | <2.46          | 8.34         | 87.9          | 0.632J          | 1.47J          | 103               | 19.9         | 61.6         | 42300B            | 43.5         | 1.74           | <0.821                 | 107         | 3.32               | 0.3J             | <2.46          | 72.3         | 183                | <33 <33                      | <33          | <33            | 44                | 96                | 91           | <33 <b>230</b>             |

## Table 6b

Sediment Sample Analytical Results - Project Area, Subtidal Locations Sediment Investigation Report

Sims Metal Management, Redwood City, California



|                             |          |          |          |         |        |           |         |                   |        |        | Meta  | ls    |         |            |        |          |        |          |          |       |              |              |              |              | PCBs         |              |              |              |            |
|-----------------------------|----------|----------|----------|---------|--------|-----------|---------|-------------------|--------|--------|-------|-------|---------|------------|--------|----------|--------|----------|----------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|
|                             | Moisture | Aluminum | Antimony | Arsenic | Barium | Beryllium | Cadmium | Chromium (III+VI) | Cobalt | Copper | Iron  | Lead  | Mercury | Molybdenum | Nickel | Selenium | Silver | Thallium | Vanadium | Zinc  | Arocior 1016 | Aroclor 1221 | Aroclor 1232 | Arocior 1242 | Aroclor 1248 | Aroclor 1254 | Aroclor 1260 | Arocior 1262 | Total PCBs |
| Screening Levels            | %        | mg/kg    | mg/kg    | mg/kg   | mg/kg  | mg/kg     | mg/kg   | mg/kg             | mg/kg  | mg/kg  | mg/kg | mg/kg | mg/kg   | mg/kg      | mg/kg  | mg/kg    | mg/kg  | mg/kg    | mg/kg    | mg/kg | μg/kg        | μg/kg      |
| 95% UCL Subtidal Background | n/a      | 29122    |          | 9.63    | 66.19  | 0.693     | 0.926   | 105.7             | 17.23  | 61.3   | 42506 | 35.39 | 3.077   | 2.689      | 110.7  | -        | 0.501  |          | 75.27    | 156.5 |              |              |              |              | -            |              |              |              | 157.1      |
| 95% UTL Subtidal Background |          | 37789    |          | 13,37   | 84.69  | 0.852     | 2,79    | 157               | 21.3   | 90.98  | 48900 | 51.68 | 4.956   | 5.01       | 178    |          | 0.806  |          | 90.11    | 200.1 |              | -            |              |              | -            |              |              |              | 395        |

|             | Location | Sample     | Sa |
|-------------|----------|------------|----|
| Sample Type | Location | Depth (ft) | 0  |
|             |          |            |    |

Notes:

Sample depths are shown in feet below sediment suface

-- = insufficient data points for statistical calculations

< = analyte not detected above laboratory reporting limit

B = analyte was present in an associated method blank

Detected concentrations are **bold** 

Bold colored concentrations are in exceedance of their corresponding screening level (shown at top)

J = estimated below laboratory reporting limit

mg/kg = milligrams per kilogram

n/a = not applicable

PCB = polychlorinated biphenyls

SDG = sample delivery group

Total PCBs summations from Aroclors were calculated using 0 for non-detects

μg/kg = micrograms per kilogram

UCL = upper confidence limit

UTL = upper tolerance limit

95% UCL = 95-percent upper confidence limit on the mean

95% UTL = 95-percent upper tolerance limit on the mean

UCL & UTL calculated using ProUCL 5.0.00 Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations

SDG

## **Table 7a**Statistical Evaluation – Project Area, Riprap Locations Sediment Investigation Report Sims Metal Management, Redwood City, California



|        |            |       | Number<br>Samples | Number<br>Detects | Min   | Max    | Mean  | Median | St Dev | 95% UCL<br>Concentration<br>Background | 95% UTL<br>Concentration<br>Background |
|--------|------------|-------|-------------------|-------------------|-------|--------|-------|--------|--------|----------------------------------------|----------------------------------------|
| Metals | Aluminum   | mg/kg | 23                | 23                | 7320  | 28600  | 17629 | 16900  | 6160   | 19834                                  | 31970                                  |
|        | Antimony   | mg/kg | 23                | 11                | 0.507 | 22.3   | 5.3   | 1.1    | 6.4    | 7.614                                  | 20.1                                   |
|        | Arsenic    | mg/kg | 23                | 23                | 9.23  | 158    | 45    | 23.4   | 41     | 71.28                                  | 139.9                                  |
|        | Barium     | mg/kg | 23                | 23                | 80.1  | 778    | 303   | 219    | 216    | 380.4                                  | 806.5                                  |
|        | Beryllium  | mg/kg | 23                | 18                | 0.317 | 0.742  | 0.48  | 0.45   | 0.17   | 0.567                                  | 0.85                                   |
|        | Cadmium    | mg/kg | 23                | 23                | 0.555 | 17.4   | 5.3   | 3.51   | 4.6    | 6.905                                  | 15.97                                  |
|        | Chromium   | mg/kg | 23                | 23                | 92.1  | 488    | 187   | 155    | 108    | 228.9                                  | 438.2                                  |
|        | Cobalt     | mg/kg | 23                | 23                | 18.3  | 73.8   | 35    | 31     | 16     | 41.51                                  | 72.12                                  |
|        | Copper     | mg/kg | 23                | 23                | 68.2  | 3970   | 1269  | 981    | 1184   | 1960                                   | 4025                                   |
|        | Iron       | mg/kg | 23                | 23                | 37500 | 199000 | 98174 | 74800  | 56664  | 123306                                 | 230088                                 |
|        | Lead       | mg/kg | 23                | 23                | 46.2  | 1820   | 613   | 469    | 560    | 925.2                                  | 1917                                   |
|        | Mercury    | mg/kg | 23                | 23                | 0.323 | 4.19   | 1.4   | 0.798  | 1.2    | 1.878                                  | 4.058                                  |
|        | Molybdenum | mg/kg | 23                | 22                | 0.764 | 42.7   | 14    | 7.55   | 13     | 26.19                                  | 44.07                                  |
|        | Nickel     | mg/kg | 23                | 23                | 98.7  | 705    | 304   | 218    | 212    | 400.6                                  | 797                                    |
|        | Selenium   | mg/kg | 23                | 9                 | 1.12  | 4.3    | 1.4   | 1.02   | 0.88   | 1.859                                  | 3.314                                  |
|        | Silver     | mg/kg | 23                | 23                | 0.345 | 6      | 2     | 1.28   | 1.7    | 2.762                                  | 5.903                                  |
|        | Thallium   | mg/kg | 23                | 2                 | 0.922 | 1.13   | 0.88  | 0.865  | 0.17   | NC                                     | NC                                     |
|        | Vanadium   | mg/kg | 23                | 23                | 44.2  | 97.8   | 68    | 68.4   | 13     | 72.99                                  | 98.85                                  |
|        | Zinc       | mg/kg | 23                | 23                | 232   | 28500  | 5330  | 3120   | 7093   | 8605                                   | 21843                                  |
| PCBs   | Total PCBs | μg/kg | 23                | 23                | 153   | 7760   | 2608  | 1670   | 2326   | 3890                                   | 8024                                   |

#### Notes:

mg/kg = miligrams per kilogram

μg/kg = micrograms per kilogram

Metals = Title 22 Metals, aluminum, iron

NC = not calculated

PCB = polychlorinated biphenyls

St Dev = standard deviation

UCL = upper confidence limit

UTL = upper tolerance limit

95% UCL = 95-percent upper confidence limit on the mean

95% UTL = 95-percent upper tolerance limit on the mean

#### Table 7b

Statistical Evaluation – Project Area, Subtidal Locations Sediment Investigation Report Sims Metal Management, Redwood City, California



|        |            |       | Number<br>Samples | Number<br>Detects | Min    | Max    | Mean  | Median | St Dev | 95% UCL<br>Concentration<br>Background | 95% UTL<br>Concentration<br>Background |
|--------|------------|-------|-------------------|-------------------|--------|--------|-------|--------|--------|----------------------------------------|----------------------------------------|
| Metals | Aluminum   | mg/kg | 104               | 104               | 12500  | 37100  | 24981 | 24550  | 4508   | 25715                                  | 33625                                  |
|        | Antimony   | mg/kg | 104               | 37                | 0.333  | 93.1   | 3.1   | 0.9    | 11.0   | 5.066                                  | 23.39                                  |
|        | Arsenic    | mg/kg | 104               | 104               | 6.02   | 76     | 14    | 12.3   | 10     | 16.22                                  | 34.28                                  |
|        | Barium     | mg/kg | 104               | 104               | 40.7   | 1290   | 139   | 80.4   | 180    | 216                                    | 484.8                                  |
|        | Beryllium  | mg/kg | 104               | 101               | 0.335  | 0.819  | 0.64  | 0.6365 | 0.095  | 0.654                                  | 0.811                                  |
|        | Cadmium    | mg/kg | 104               | 98                | 0.502  | 103    | 4.5   | 1.48   | 12     | 9.475                                  | 26.51                                  |
|        | Chromium   | mg/kg | 104               | 104               | 78.5   | 780    | 131   | 107    | 91     | 146.4                                  | 305.7                                  |
|        | Cobalt     | mg/kg | 104               | 104               | 12.6   | 317    | 25    | 19.8   | 30     | 30.55                                  | 83.43                                  |
|        | Copper     | mg/kg | 104               | 104               | 32.9   | 12000  | 422   | 80.25  | 1291   | 973.8                                  | 2898                                   |
|        | Iron       | mg/kg | 104               | 104               | 34200  | 186000 | 53460 | 42850  | 27529  | 58072                                  | 106244                                 |
|        | Lead       | mg/kg | 104               | 104               | 11.1   | 3080   | 200   | 65.85  | 430    | 383.3                                  | 1024                                   |
|        | Mercury    | mg/kg | 104               | 103               | 0.0613 | 16.6   | 1.1   | 0.5505 | 2      | 1.965                                  | 4.922                                  |
|        | Molybdenum | mg/kg | 104               | 59                | 0.289  | 56.7   | 3.4   | 0.413  | 7.8    | 6.773                                  | 18.31                                  |
|        | Nickel     | mg/kg | 104               | 104               | 79.8   | 3520   | 187   | 109    | 356    | 339.1                                  | 869.6                                  |
|        | Selenium   | mg/kg | 104               | 40                | 0.753  | 10.9   | 1.7   | 0.985  | 1.9    | 2.127                                  | 5.364                                  |
|        | Silver     | mg/kg | 104               | 81                | 0.189  | 47.8   | 1.5   | 0.688  | 4.8    | 2.43                                   | 10.68                                  |
|        | Thallium   | mg/kg | 104               | 2                 | 0.512  | 0.576  | 0.89  | 0.835  | 0.2    | NC                                     | NC                                     |
|        | Vanadium   | mg/kg | 104               | 104               | 52.4   | 101    | 75    | 74.8   | 8.2    | 76.13                                  | 90.6                                   |
|        | Zinc       | mg/kg | 104               | 104               | 88     | 10100  | 829   | 249    | 1539   | 1487                                   | 3780                                   |
| PCBs   | Total PCBs | μg/kg | 104               | 93                | 37     | 12000  | 916   | 225    | 1896   | 1728                                   | 4533                                   |

#### Notes:

mg/kg = miligrams per kilogram

μg/kg = micrograms per kilogram

Metals = Title 22 Metals, aluminum, iron

NC = not calculated

PCB = polychlorinated biphenyls

St Dev = standard deviation

UCL = upper confidence limit

UTL = upper tolerance limit

95% UCL = 95-percent upper confidence limit on the mean

95% UTL = 95-percent upper tolerance limit on the mean

**Table 8**Reference Area PCB Data
Sims Metal Management, Redwood City, California



| Reference Area                                                                              | Number of<br>Samples | Number of<br>NDs | Min  | Max   | SD    | Mean  | 95% UCL | 90th Percentile<br>90% UTL (2015<br>Ambient Value) | 99th Percentile<br>90% UTL <sup>1</sup> |
|---------------------------------------------------------------------------------------------|----------------------|------------------|------|-------|-------|-------|---------|----------------------------------------------------|-----------------------------------------|
| USACE Redwood Creek, 2014 <sup>2</sup><br>(-32.0 to -32.5-Z)                                | 12                   | 0                | 43   | 356   | 93.03 | 126.9 | 197     |                                                    |                                         |
| USACE Redwood Creek, 2015 <sup>3</sup><br>(-30.0 to -30.5-Z)                                | 12                   | 0                | 2.09 | 30.1  | 7.219 | 13.64 | 17.39   |                                                    |                                         |
| USACE Redwood Creek, 2015 <sup>3</sup><br>(-31.0 to -31.5-Z)                                | 12                   | 0                | 4.56 | 28.3  | 7.241 | 15.26 | 19.01   |                                                    |                                         |
| USACE Redwood Creek, 2015 <sup>3</sup><br>(-32.0 to -32.5-Z)                                | 12                   | 0                | 1.22 | 132.4 | 38.43 | 37.68 | 73.61   |                                                    |                                         |
| San Francisco Bay Area Sediments calculated<br>from data between 2002 and 2014 <sup>4</sup> |                      |                  |      |       |       |       | N/A     | 18.2                                               | 29.5                                    |

#### Notes:

PCB = polychlorinated biphenyls

PCB concentrations in micrograms per kilogram (µg/kg)

Total PCB from summation of PCB congeners

- -- not calculated
- 1 = 99th percentile required only for PCBs. Indicates approximate (non-outlier) upper limit for other constituents
- 2 = United States of Army Corp. of Engineers (USACE), San Francisco District. 2015. Redwood City Harbor Navigation Improvement Feasibility Report and Integrated EIS/EIR. HydroPlan LLC, in collaboration with GAIA and Moffatt and Nichol
- 3 = Data provide by United States Environmental Protection Agency staff during meeting with Sims and Terraphase representatives on March 8, 2016
- 4 = San Francisco Estuary Institute (SFEI). 2016. Technical Memorandum, Updated Ambient Concentrations of Toxic Chemicals in the San Francisco Bay Area Sediments (-30.0 to -30.5-Z) = sample depth shown as elevation relative to Mean Lower Low Water